proinsulin synthesis
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 1)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Yumeng Huang ◽  
Jinyang Zhen ◽  
Tengli Liu ◽  
Jianyu Wang ◽  
Na Li ◽  
...  

Objective: Progressive beta cell dysfunction is a hallmark of type 2 diabetes (T2D). Increasing evidence indicates that over-stimulating proinsulin synthesis causes proinsulin misfolding and impairs insulin maturation and storage in db/db mice. However, defective insulin maturation in patients with T2D remains unknown. Methods: We examined intra-islet and intra-cellular distributions of proinsulin and insulin and proinsulin to insulin ratio in the islets of patients with T2D. The expression of transcription factor NKX6.1 and dedifferentiation marker ALDH1A3, as well as glucagon were detected by immunofluorescence. Results: We identified a novel subgroup of beta cells expressing only proinsulin but not insulin. Importantly, significantly increased proinsulin positive and insulin negative (PI+/INS-) cells were evident in T2D, and this increase was strongly correlated with levels of Hemoglobin A1C (HbA1c) in T2D and prediabetes. The percentages of beta cells expressing prohormone convertase 1/3 and carboxypeptidase E were not reduced. Indeed, while proinsulin displayed higher degree of co-localization with the Golgi markers GM130/TGN46 in control beta cells, it appeared to be more diffused within the cytoplasm and less co-localized with GM130/TGN46 in PI+/INS- cells. Furthermore, the key functional transcription factor NKX6.1 markedly decreased in the islets of T2D, especially in the cells with PI+/INS-. The decreased NKX6.1+/PI+/INS+ was strongly correlated with levels of HbA1c in T2D. Almost all PI+/INS- cells showed absence of NKX6.1. Moreover, the percentages of PI+/INS- cells expressing ALDH1A3 were elevated along with an increased acquisition of glucagon immunostaining. Conclusion: Our data demonstrates defective insulin maturation in patients with T2D.


2005 ◽  
Vol 391 (2) ◽  
pp. 291-300 ◽  
Author(s):  
Isabel C. Greenman ◽  
Edith Gomez ◽  
Claire E. J. Moore ◽  
Terence P. Herbert

Glucose acutely stimulates proinsulin synthesis in pancreatic β-cells through a poorly understood post-transcriptional mechanism. In the present study, we demonstrate in pancreatic β-cells that glucose stimulates the recruitment of ribosome-associated proinsulin mRNA, located in the cytoplasm, to the ER (endoplasmic reticulum), the site of proinsulin synthesis, and that this plays an important role in glucose-stimulated proinsulin synthesis. Interestingly, glucose has greater stimulatory effect on the recruitment of proinsulin mRNA to the ER compared with other mRNAs encoding secretory proteins. This, as far as we are aware, is the first example whereby mRNAs encoding secretory proteins are selectively recruited to the ER and provides a novel regulatory mechanism for secretory protein synthesis. Contrary to previous reports, and importantly in understanding the mechanism by which glucose stimulates proinsulin synthesis, we demonstrate that there is no large pool of ‘free’ proinsulin mRNA in the cytoplasm and that glucose does not increase the rate of de novo initiation on the proinsulin mRNA. However, we show that glucose does stimulate the rate of ribosome recruitment on to ribosome-associated proinsulin mRNA. In conclusion, our results provide evidence that the selective recruitment of proinsulin mRNA to the ER, together with increases in the rate of initiation are important mediators of glucose-stimulated proinsulin synthesis in pancreatic β-cells.


1998 ◽  
Vol 331 (2) ◽  
pp. 553-561 ◽  
Author(s):  
Robert H. SKELLY ◽  
Cornelius L. BOLLHEIMER ◽  
Barton L. WICKSTEED ◽  
Barbara E. CORKEY ◽  
Christopher J. RHODES

The regulation of proinsulin biosynthesis in pancreatic β-cells is vital for maintaining optimal insulin stores for glucose-induced insulin release. The majority of nutrient fuels that induce insulin release also stimulate proinsulin biosynthesis, but since insulin exocytosis and proinsulin synthesis involve different cellular mechanisms, a point of divergence in the respective metabolic stimulus–response coupling pathways must exist. A parallel examination of the metabolic regulation of proinsulin biosynthesis and insulin secretion was undertaken in the same β-cells. In MIN6 cells, glucose-induced proinsulin biosynthesis and insulin release shared a requirement for glycolysis to generate stimulus-coupling signals. Pyruvate stimulated both proinsulin synthesis (threshold 0.13–0.2 mM) and insulin release (threshold 0.2–0.3 mM) in MIN6 cells, which was eliminated by an inhibitor of pyruvate transport (1 mM α-cyano-4-hydroxycinnamate). A combination of α-oxoisohexanoate and glutamine also stimulated proinsulin biosynthesis and insulin release in MIN6 cells, which, together with the effect of pyruvate, indicated that anaplerosis was necessary for instigating secondary metabolic stimulus-coupling signals in the β-cell. A consequence of increased anaplerosis in β-cells is a marked increase in malonyl-CoA, which in turn inhibits β-oxidation and elevates cytosolic fatty acyl-CoA levels. In the β-cell, long-chain fatty acyl moieties have been strongly implicated as metabolic stimulus-coupling signals for regulating insulin exocytosis. Indeed, it was found in MIN6 cells and isolated rat pancreatic islets that exogenous oleate, palmitate and 2-bromopalmitate all markedly potentiated glucose-induced insulin release. However, in the very same β-cells, these fatty acids in contrast inhibited glucose-induced proinsulin biosynthesis. This implies that neither fatty acyl moieties nor β-oxidation are required for the metabolic stimulus–response coupling pathway specific for proinsulin biosynthesis, and represent an early point of divergence of the two signalling pathways for metabolic regulation of proinsulin biosynthesis and insulin release. Therefore alternative metabolic stimulus-coupling factors for the specific control of proinsulin biosynthesis at the translational level were considered. One possibility examined was an increase in glycerophosphate shuttle activity and change in cytosolic redox state of the β-cell, as reflected by changes in the ratio of α-glycerophosphate to dihydroxyacetone phosphate. Although 16.7 mM glucose produced a significant rise in the α-glycerophosphate/dihydroxyacetone phosphate ratio, 1 mM pyruvate did not. It follows that the cytosolic redox state and fatty acyl moieties are not necessarily involved as secondary metabolic stimulus-coupling factors for regulation of proinsulin biosynthesis. However, the results indicate that glycolysis and the subsequent increase in anaplerosis are indeed necessary for this signalling pathway, and therefore an extramitochondrial product of β-cell pyruvate metabolism (that is upstream of the increased cytosolic fatty acyl-CoA) acts as a key intracellular secondary signal for specific control of proinsulin biosynthesis by glucose at the level of translation.


Endocrinology ◽  
1987 ◽  
Vol 120 (4) ◽  
pp. 1225-1231 ◽  
Author(s):  
S. NAGAMATSU ◽  
J. L. BOLAFFI ◽  
GEROLD M. GRODSKY

Metabolism ◽  
1984 ◽  
Vol 33 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Dana E. Johnson ◽  
G.Eric Bauer ◽  
Frank G. Williams ◽  
Padmakar K. Dixit

Sign in / Sign up

Export Citation Format

Share Document