meson pole
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 2)

2020 ◽  
Vol 229 (22-23) ◽  
pp. 3517-3536
Author(s):  
D. Blaschke ◽  
A. V. Friesen ◽  
Yu. L. Kalinovsky ◽  
A. Radzhabov

AbstractWithin the three-flavor PNJL and EPNJL chiral quark models we have obtained pseudoscalar meson properties in quark matter at finite temperature T and baryochemical potential μB. We compare the meson pole (Breit-Wigner) approximation with the Beth-Uhlenbeck (BU) approach that takes into account the continuum of quark-antiquark scattering states when determining the partial densities of pions and kaons. We evaluate the kaon-to-pion ratios along the (pseudo-)critical line in the T − μB plane as a proxy for the chemical freezeout line, whereby the variable x = T∕μB is introduced that corresponds to the conserved entropy per baryon as initial condition for the heavy-ion collision experiments. We present a comparison with the experimental pattern of kaon-to-pion ratios within the BU approach and using x-dependent pion and strange quark potentials. A sharp “horn” effect in the energy dependence K+∕π+ ratio is explained by the enhanced pion production at energies above √sNN=8 GeV, when the system enters the regime of meson dominance. This effect is in line with the enhancement of low-momentum pion spectra that is discussed as a precursor of the pion Bose condensation and entails the occurrence of a nonequilibrium pion chemical potential of the order of the pion mass. We elucidate that the horn effect is not related to the existence of a critical endpoint in the QCD phase diagram.


2019 ◽  
Vol 797 ◽  
pp. 134855 ◽  
Author(s):  
Gernot Eichmann ◽  
Christian S. Fischer ◽  
Esther Weil ◽  
Richard Williams

2018 ◽  
Vol 175 ◽  
pp. 06030
Author(s):  
Antoine Gérardin ◽  
Jeremy Green ◽  
Oleksii Gryniuk ◽  
Georg von Hippel ◽  
Harvey B. Meyer ◽  
...  

We present our preliminary results on the calculation of hadronic light-by-light forward scattering amplitudes using vector four-point correlation functions computed on the lattice. Using a dispersive approach, forward scattering amplitudes can be described by γ*γ* → hadrons fusion cross sections and then compared with phenomenology. We show that only a few states are needed to reproduce our data. In particular, the sum rules considered in this study imply relations between meson–γγ couplings and provide valuable information about individual form factors which are often used to estimate the meson-pole contributions to the hadronic light-by-light contribution to the (g – 2) of the muon.


2002 ◽  
Vol 632 (1-3) ◽  
pp. 330-342 ◽  
Author(s):  
E. Bartoš ◽  
A.-Z. Dubničková ◽  
S. Dubnička ◽  
E.A. Kuraev ◽  
E. Zemlyanaya

2001 ◽  
Vol 16 (09) ◽  
pp. 1605-1630 ◽  
Author(s):  
K. TERASAKI

K→ππ, KL-KS mass difference (Δ mK) and KL→γγ(*) are studied systematically by decomposing their amplitude into a sum of factorizable and nonfactorizable ones. The former is calculated by using the naive factorization while the latter is assumed to be controlled by hadron dynamics. Nonfactorizable amplitudes for the K→ππ decays which are estimated by using a hard pion technique dominates the |ΔI| = ½ amplitude. It is seen that the naively factorized short distance term dominates ΔmK as usual since contributions of pseudoscalar-meson poles and ππ intermediate states as the nonfactorizable long distance effects interfere destructively with each other. The K*-meson pole survives in the KL→γγ decay and plays an important role in the present perspective in contrast with the existing theories which are restricted by the theory of field algebra. The form factor for the Dalitz decays of KL and their rates are compared with the existing data.


Sign in / Sign up

Export Citation Format

Share Document