sequential machines
Recently Published Documents


TOTAL DOCUMENTS

533
(FIVE YEARS 17)

H-INDEX

30
(FIVE YEARS 2)

2021 ◽  
Vol 11 (21) ◽  
pp. 9790
Author(s):  
Jung-Min Yang ◽  
Seong-Jin Park ◽  
Seong Woo Kwak

Static corrective controllers are more efficient than dynamic ones since they consist of only logic elements, whereas their existence conditions are more restrictive. In this paper, we present a static corrective control scheme for fault diagnosis and fault tolerant control of input/state asynchronous sequential machines (ASMs) vulnerable to transient faults. The design flexibility of static controllers is enlarged by virtue of using a diagnoser and state bursts. Necessary and sufficient conditions for the existence of a diagnoser and static fault tolerant controller are presented, and the process of controller synthesis is addressed based on the derived condition. Illustrative examples on practical ASMs are provided to show the applicability of the proposed scheme.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4821
Author(s):  
Lenka Kunčická ◽  
Miroslav Jopek ◽  
Radim Kocich ◽  
Karel Dvořák

Tristal steel is low-carbon construction-type steel widely used in the automotive industry, e.g., for braking components. Given the contemporary demands on the high-volume production of such components, these are typically fabricated using automatic sequential machines, which can produce components at strain rates up to 103 s−1. For this reason, characterising the behaviour of the used material at high strain rates is of the utmost importance for successful industrial production. This study focuses on the characterisation of the behaviour of low-carbon steel via developing its material model using the Johnson-Cook constitutive equation. At first, the Taylor anvil test is performed. Subsequently, the acquired data together with the results of observations of structures and properties of the tested specimens are used to fill the necessary parameters into the equation. Finally, the developed equation is used to numerically simulate the Taylor anvil test and the predicted data is correlated with the experimentally acquired one. The results showed a satisfactory correlation of the experimental and predicted data; the deformed specimen region featured increased occurrence of dislocations, as well as higher hardness (its original value of 88 HV increased to more than 200 HV after testing), which corresponded to the predicted distributions of effective imposed strain and compressive stress.


Sign in / Sign up

Export Citation Format

Share Document