Earthquakes Induced by Wastewater Disposal near Musreau Lake, Alberta, 2018–2020

Author(s):  
Tianyang Li ◽  
Yu Jeffrey Gu ◽  
Jingchuan Wang ◽  
Ruijia Wang ◽  
Javad Yusifbayov ◽  
...  

Abstract Although hydraulic fracturing-induced earthquakes have been widely reported in Alberta, Canada, only one seismic cluster (the Cordel Field) has thus far been linked to wastewater disposal (WD). In this study, we report a statistically significant spatiotemporal correlation between recent earthquakes and nearby WD wells near Musreau Lake—the second disposal-induced earthquake swarm in Alberta. This newly occurred swarm contains five events with local magnitudes ML>3 from January 2018 to March 2020, forming into three tightly spaced clusters. The refined locations and focal mechanisms suggest a ∼10 km long northwest–southeast-trending rupture along the northern Rocky Mountains that developed over time, during which both poroelastic effects and static stress transfer played key roles. Through a statistical analysis of all reported induced earthquake clusters in the western Canada sedimentary basin (WCSB), we propose a linear predictive relationship (i.e., the “Interpolated Strike Orientation” model) between fault rupture direction and fault distance to the Rocky Mountains. This observation-based model, which is supported by both the focal mechanisms of the natural earthquakes and the nearby northwest-striking geological faults, is a new and useful reference for future assessments of seismic hazard in the WCSB.

Author(s):  
Michael L. Zientek ◽  
Pamela D. Derkey ◽  
Robert J. Miller ◽  
J. Douglas Causey ◽  
Arthur A. Bookstrom ◽  
...  

Author(s):  
Edward A. Mankinen ◽  
Thomas G. Hildenbrand ◽  
Michael L. Zientek ◽  
Stephen E. Box ◽  
Arthur A. Bookstrom ◽  
...  

1994 ◽  
Vol 65 (2) ◽  
pp. 167-171 ◽  
Author(s):  
L.T. Long ◽  
A. Kocaoglu ◽  
R. Hawman ◽  
P.J.W. Gore

Abstract During the summer of 1993, the residents in the Norris Lake community, Lithonia, Georgia, were bothered by an incessant swarm of earthquakes. The largest, a magnitude 2.7 on September 23, showed a normal aftershock decay and occurred after the main swarm. Over 10,000 earthquakes have been detected, of which perhaps 500 were felt. The earthquakes began June 8, 1993, with a 5-day swarm. The residents, accustomed to quarry explosions, suspected the quarries of irregular activities. To locate the source of the events, a visual recorder and a digital event recorder were placed in the epicentral area. Ten to 20 events were detected per day for the next three weeks. The swarm then escalated to a peak of over 100 per day by August 15, 1993. Activity following the peak died down to about 10 events per day. The magnitude 2.7 event of September 23 was followed by a normal aftershock sequence. The larger events were felt with intensity V within 2 km of their epicenter, and noticed (intensity II) to a distance of 15 km. Some incidents of cracked wallboard and foundations have been reported, but no significant damage has been documented. Preliminary locations, based on data from digital event recorders, suggest an average depth of 1.0 km. The hypocenters are in the Lithonia gneiss, a massive migmatite resistant to weathering and used locally as a building stone. The epicenters are 1 to 2 km south-southwest of the Norris Lake Community. The cause of the seismicity is not yet known. The earthquakes are characteristic of reservoir-induced earthquakes; however, Norris Lake is a small (96 acres), 2 to 5m deep recreational lake which has existed since the 1950s.


The Holocene ◽  
2019 ◽  
Vol 30 (3) ◽  
pp. 479-484
Author(s):  
Daniel P Maxbauer ◽  
Mark D Shapley ◽  
Christoph E Geiss ◽  
Emi Ito

We present two hypotheses regarding the evolution of Holocene climate in the Northern Rocky Mountains that stem from a previously unpublished environmental magnetic record from Jones Lake, Montana. First, we link two distinct intervals of fining magnetic grain size (documented by an increasing ratio of anhysteretic to isothermal remanent magnetization) to the authigenic production of magnetic minerals in Jones Lake bottom waters. We propose that authigenesis in Jones Lake is limited by rates of groundwater recharge and ultimately regional hydroclimate. Second, at ~8.3 ka, magnetic grain size increases sharply, accompanied by a drop in concentration of magnetic minerals, suggesting a rapid termination of magnetic mineral authigenesis that is coeval with widespread effects of the 8.2 ka event in the North Atlantic. This association suggests a hydroclimatic response to the 8.2 ka event in the Northern Rockies that to our knowledge is not well documented. These preliminary hypotheses present compelling new ideas that we hope will both highlight the sensitivity of magnetic properties to record climate variability and attract more work by future research into aridity, hydrochemical response, and climate dynamics in the Northern Rockies.


2016 ◽  
Vol 43 (3) ◽  
pp. 1092-1099 ◽  
Author(s):  
T. H. W. Goebel ◽  
S. M. Hosseini ◽  
F. Cappa ◽  
E. Hauksson ◽  
J. P. Ampuero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document