settling characteristic
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 1)

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1686 ◽  
Author(s):  
Chua ◽  
Malek ◽  
Chong ◽  
Sujarwo ◽  
Ho

Increasing awareness on the detrimental effects of inorganic chemical coagulants and sustainable treatment have paved the way to develop environmentally-benign natural coagulants for water and wastewater treatment. In this research, brown, green, and red lentil (Lens culinaris) extracts have been evaluated as a natural coagulant for the turbidity reduction. The physicochemical characteristics properties of lentil extract were evaluated through field emission scanning electron microscopy (FESEM), Fourier-transform infrared spectroscopy (FTIR), zeta potential analysis, and energy-dispersive X-ray (EDX) analysis. Red lentil extract was found to be an anionic polymer with hydroxyl and carboxyl functional groups. The effects of three major operating parameters, pH, the concentration of coagulant, and settling time, were studied and optimized through response surface methodology (RSM) using the Box–Behnken Design (BBD). The red lentil extract as coagulant was outperformed alum in acidic wastewater treatment, which achieved up to 98.87% turbidity removal with an optimum concentration of 26.3 mg/L in 3 min. Besides, the red lentil extract as coagulant reduced 29.42% of material cost, generated 15.6% lower amount of sludge and produced flocs with better settling characteristic (SVI: 7.39) as compared to alum. Based on the experimental observation and characterization study, absorption and bridging mechanisms were proposed for red lentil extract as the coagulant in turbidity reduction.


2012 ◽  
Vol 65 (2) ◽  
pp. 309-316 ◽  
Author(s):  
A. Nor-Anuar ◽  
Z. Ujang ◽  
M. C. M. van Loosdrecht ◽  
M. K. de Kreuk ◽  
G. Olsson

Aerobic granular sludge has a number of advantages over conventional activated sludge flocs, such as cohesive and strong matrix, fast settling characteristic, high biomass retention and ability to withstand high organic loadings, all aspects leading towards a compact reactor system. Still there are very few studies on the strength of aerobic granules. A procedure that has been used previously for anaerobic granular sludge strength analysis was adapted and used in this study. A new coefficient was introduced, called a stability coefficient (S), to quantify the strength of the aerobic granules. Indicators were also developed based on the strength analysis results, in order to categorize aerobic granules into three levels of strength, i.e. very strong (very stable), strong (stable) and not strong (not stable). The results indicated that aerobic granules grown on acetate were stronger (high density: >150 g T SSL−1 and low S value: 5%) than granules developed on sewage as influent. A lower value of S indicates a higher stability of the granules.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 77-81
Author(s):  
D. Pak ◽  
W. Chang

A novel coagulation technology using atomized molten slag with ferrous sulfate has been developed to treat a turbid and colored water or wastewater. The atomized molten slag is produced by atomizing the molten slag from the steel-making process. The atomized molten slag has magnetic iron oxide in its constituent molecules so that it is magnetized. In this novel coagulation technology, the atomized molten slag acts as nuclei for coagulation process and weighting agent for the resultant floc. In this study, this new coagulation technology was compared with metal hydroxide flocs such as FeCl3 and PAC in treating textile wastewater. A batch settling test was conducted to investigate the settling characteristic of sludge formed with the atomized molten slag. The settling velocity of sludge formed with the atomized molten slag is almost ten times greater than that of sludge formed with FeCl3 or PAC. The coagulation using the atomized molten slag showed a higher removal rate of color, suspended solid, TOC, COD, TKN and T-P. The atomized molten slag is capable of adsorbing organic substance, ammonia and phosphate. This characteristic leads to higher removal rate than FeCl3 or PAC. The gel permeation chromatography of the wastewater treated using the atomized molten slag illustrated that this novel coagulation technology is more efficient in removing the particles with low molecular weight. The removal rates of color, suspended solid, COD, TOC, ammonia and phosphorous increase with increasing amount of atomized molten slag addition. Even though the atomized molten slag was overdosed, restabilization of particles was not encountered.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 11-18 ◽  
Author(s):  
Michael R. Rasmussen ◽  
Torben Larsen ◽  
Frédéric Clauss

The effect of adding varying mixtures of talc and chlorite powder to activated sludge in order to improve the settling characteristic has been studied. The powder is found to improve the settling velocity of the sludge, strictly by increasing the average density of the sludge floc aggregate. The settling velocity was measured with a recirculated settling column under different concentrations and turbulence levels. Numerical simulation of a secondary settling tank indicates that adding fine powder will improve the overall performance considerably.


Sign in / Sign up

Export Citation Format

Share Document