concentrate heat
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 3)

H-INDEX

1
(FIVE YEARS 0)

Ocean Science ◽  
2021 ◽  
Vol 17 (5) ◽  
pp. 1231-1250
Author(s):  
Alexandre Barboni ◽  
Ayah Lazar ◽  
Alexandre Stegner ◽  
Evangelos Moschos

Abstract. Statistics of anticyclonic eddy activity and eddy trajectories in the Levantine Basin over the 2000–2018 period are analyzed using the DYNED-Atlas database, which links automated mesoscale eddy detection by the Angular Momentum Eddy Detection and Tracking Algorithm (AMEDA) algorithm to in situ oceanographic observations. This easternmost region of the Mediterranean Sea, delimited by the Levantine coast and Cyprus, has a complex eddying activity, which has not yet been fully characterized. In this paper, we use Lagrangian tracking to investigate the eddy fluxes and interactions between different subregions in this area. The anticyclonic structure above the Eratosthenes Seamount is identified as hosting an anticyclone attractor, constituted by a succession of long-lived anticyclones. It has a larger radius and is more persistent (staying in the same position for up to 4 years with successive merging events) than other eddies in this region. Quantification of anticyclone flux shows that anticyclones that drift towards the Eratosthenes Seamount are mainly formed along the Israeli coast or in a neighboring area west of the seamount. The southeastern Levantine area is isolated, with no anticyclone transfers to or from the western part of the basin, defining the effective attraction basin for the Eratosthenes anticyclone attractor. Co-localized in situ profiles inside eddies provide quantitative information on their subsurface physical anomaly signature, whose intensity can vary greatly with respect to the dynamical surface signature intensity. Despite interannual variability, the so-called Eratosthenes anticyclone attractor stores a larger amount of heat and salt than neighboring anticyclones, in a deeper subsurface anomaly that usually extends down to 500 m. This suggests that this attractor could concentrate heat and salt from this subbasin, which will impact the properties of intermediate water masses created there.


2021 ◽  
Author(s):  
Alexandre Barboni ◽  
Ayah Lazar ◽  
Alexandre Stegner ◽  
Evangelos Moschos

<p>Statistics of anticyclone activity and trajectories in the southeastern Mediterranean sea over the period 2000-2018<br>is created using the DYNED atlas, which links the automated mesoscale eddy detection by the AMEDA algorithm with in<br>situ oceanographic observations. This easternmost region of the Mediterranean sea, delimited by the Levantine coast and<br>Cyprus, has a complex eddying activity, which has not yet been fully characterized. Using Lagrangian tracking<br>to investigate the eddy fluxes and interactions between different subregions in this area, we find that the southeastern Levantine<br>area is isolated, with no anticyclone exchanges with the western part of the basin. Moreover the anticyclonic structure above<br>the Eratosthenes seamount is identified as being an anticyclone attractor, differentiated from other anticyclones and staying<br>around this preferred position up to four years with successive mergings. Colocalized in situ profiles inside eddies provide<br>quantitative information on their subsurface structure and show that similar surface signatures correspond to very different<br>physical properties. Despite interannual variability, the so-called "Eratosthenes attractor" stores a larger amount of heat and<br>salt than neighboring anticyclones, in a deeper subsurface anomaly that usually extend down to 500 m. This suggests that this<br>attractor could concentrate heat and salt from this sub-basin, which will impact the properties of intermediate water masses<br>created there.</p>


2021 ◽  
Author(s):  
Alexandre Barboni ◽  
Ayah Lazar ◽  
Alexandre Stegner ◽  
Evangelos Moschos

Abstract. Statistics of anticyclone activity and trajectories in the southeastern Mediterranean sea over the period 2000–2018 is created using the DYNED atlas, which links the automated mesoscale eddy detection by the AMEDA algorithm with in situ oceanographic observations. This easternmost region of the Mediterranean sea, delimited by the Levantine coast and Cyprus, has a complex eddying activity, which has not yet been fully characterized. In this paper we use Lagrangian tracking to investigate the eddy fluxes and interactions between different subregions in this area. We find that the southeastern Levantine area is isolated, with no anticyclone exchanges with the western part of the basin. Moreover the anticyclonic structure above the Eratosthenes seamount is identified as being an anticyclone attractor, differentiated from other anticyclones and staying around this preferred position up to four years with successive mergings. Colocalized in situ profiles inside eddies provide quantitative information on their subsurface structure and show that similar surface signatures correspond to very different physical properties. Despite interannual variability, the so-called Eratosthenes attractor stores a larger amount of heat and salt than neighbouring anticyclones, in a deeper subsurface anomaly that usually extend down to 500 m. This suggests that this attractor could concentrate heat and salt from this sub-basin, which will impact the properties of intermediate water masses created there.


2018 ◽  
Vol 186 ◽  
pp. 01007
Author(s):  
Qingxiang Ji ◽  
Guodong Fang ◽  
Jun Liang

In this paper we apply transformation optics theory to thermodynamics and design thermal cloaks and concentrators with arbitrarily shaped non-conformal objects and coatings. Expressions of the required material parameters are derived analytically and then validated by numerical simulations. We apply this method to design a thermal cloak which can guide the heat flow around the inner domain without perturbation to external thermal fields. In this way, the object inside the inner domain is protected from the invasion of external heat fluxes. In contrast, a concentrator is designed to concentrate heat flows into a small region without disturbing outside temperature fields, which can considerably enhance the heat density in the designed domain. The proposed method extends the design flexibility in manipulating heat flux and will find wide applications in thermal protection systems, solar cells and so on.


2013 ◽  
Vol 664 ◽  
pp. 884-890
Author(s):  
Noureddine Barka ◽  
Abdel Jelil Khelalfa ◽  
Abderrazak El Ouafi ◽  
Philippe Bocher ◽  
Jean Brousseau

This work is carried principally by simulation efforts using computer-modeling software (COMSOL). The developed 2D model includes the coupling between electromagnetic and thermal fields, and takes account of the nonlinear behaviour of material properties versus temperature. Several steps were followed to reach this goal. First, a 2D finite element model of a gear was developed in order to simulate the induced currents density and temperature distributions for various frequencies and external currents applied in the coil. Second, the temperature profiles were compared using the ratio between the skin depth and the teeth height. In geometry cases, it was possible to dose the power level of the medium (MF) and high (HF) frequencies to reach a desired uniform case depth. The MF and HF powers are simulated sequentially in order to better concentrate heat in the tooth tip and root of gear. The obtained results help process developers to select the proper parameters for the induction machine in order to achieve the desired hardness profile.


2012 ◽  
Vol 524-527 ◽  
pp. 3524-3529
Author(s):  
Hua Chen ◽  
Kai Wang

The impacts of some factors on the development of urban heat island are investigated in this paper. The results show that the development of urban heat island is influenced by many factors. Cold and try climate is more favorable for the development of urban heat island than warm and moist climate; Urban heat island develops slowly in those seashore cities that are influenced obviously by land and sea breezes. Closed topography (e.g., valleys, basins) is favorable for the development. The heat island development is direct proportional to urban developing speed; In the cities in which highly energy consumption industries concentrate, heat island is more obvious.


Vox Sanguinis ◽  
1987 ◽  
Vol 52 (4) ◽  
pp. 265-271 ◽  
Author(s):  
Claudine Mazurier ◽  
Christophe Romeuf ◽  
Armelle Parquet-Gernez ◽  
Sylvie Jorieux ◽  
Maurice Goudemand

Vox Sanguinis ◽  
1987 ◽  
Vol 52 (4) ◽  
pp. 265-271
Author(s):  
Claudine Mazurier ◽  
Christophe de Romeuf ◽  
Armelle Parquet-Gernez ◽  
Sylvie Jorieux ◽  
Maurice Goudemand

Sign in / Sign up

Export Citation Format

Share Document