related dnas
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 1)

Genetics ◽  
1997 ◽  
Vol 145 (1) ◽  
pp. 29-38
Author(s):  
James Westmoreland ◽  
Gregory Porter ◽  
Miroslav Radman ◽  
Michael A Resnick

The ability of related DNAs to undergo recombination decreases with increased sequence divergence. Mismatch repair has been proposed to be a key factor in preventing homeologous recombination; however, the contribution of mismatch repair is not universal. Although mismatch repair has been proposed to act by preventing strand exchange and/or inactivating multiply mismatched heteroduplexes, there has been no systematic study to determine at what step(s) in recombination mismatch repair acts in vivo. Since heteroduplex is a commonly proposed intermediate in many models of recombination, we have investigated the consequences of mismatch repair on plasmids that are multiply mismatched in heteroduplex structures that are similar to those that might arise during recombination. Plasmids containing multiply mismatched regions were transformed into wild-type and Mut–  Eschericia coli mutants. There was only a 30–40% reduction in transformation of Mut+ as compared to mutS and mutL strains for DNAs containing an 18% mismatched heteroduplex. The products obtained from mutS hosts differed from those obtained from Mut+ hosts in that there were many more colonies containing mixtures of two plasmids, due to survival of both strands of the heteroduplex. There were nearly 10 times more recombinants obtained from the mutS as compared to the wild-type host. Based on these results and those from other studies with E. coli and yeast, we propose that the prevention of recombination between highly diverged DNAs may be at a step earlier than heteroduplex formation.


Genetics ◽  
1994 ◽  
Vol 136 (3) ◽  
pp. 709-719
Author(s):  
F J Wang ◽  
L S Ripley

Abstract Most single base deletions detected after DNA polymerization in vitro directed by either Escherichia coli DNA polymerase I or its Klenow fragment are opposite Pu in the template. The most frequent mutations were previously found to be associated with the consensus template context 5'-PyTPu-3'. In this study, the predictive power of the consensus sequence on single base deletion frequencies was directly tested by parallel comparison of mutations arising in four related DNAs differing by a single base. G, a deletion hotspot within the template context 5'-TTGA-3', was substituted by each of the 3 other bases. Previous studies had shown that deletions opposite the G were frequent but that deletions opposite its neighboring A were never detected. Based on the predictions of the consensus, the substitution of T for G should produce frequent deletions opposite the neighboring A due to its new 5'-TTTA-3' template context. This prediction was fulfilled; no deletions of this A were detected in the other templates. The consensus further predicted that deletions opposite template C would be lower than those opposite either A or G at the same site and this prediction was also fulfilled. The C substitution also produced a new hotspot for 1 bp deletions 14 bp away. The new hotspot depends on quasi-palindromic misalignment of the newly synthesized DNA strand during polymerization; accurate, but ectopically templated synthesis is responsible for this mutagenesis. Mutations templated by quasi-palindromic misalignments have previously been recognized when they produced complex sequence changes; here we show that this mechanism can produce frequent single base deletions. The unique stimulation of misalignment mutagenesis by the C substitution in the template is consistent with the singular ability of C at that site to contribute to extended complementary pairing during the DNA misalignment that precedes mutagenesis.


1981 ◽  
Vol 1 (3) ◽  
pp. 223-228
Author(s):  
L. Buluwela ◽  
A. D. B. Malcolm ◽  
D. V. Coleman ◽  
S. D. Gardner

Restriction endonuclease mapping of BK virus strain GS using DdeI has allowed us to correct and extend the previously published map.


Sign in / Sign up

Export Citation Format

Share Document