mucous neck cells
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 4)

H-INDEX

14
(FIVE YEARS 0)

2019 ◽  
Vol 21 (1) ◽  
pp. 196
Author(s):  
Melissa Teles Silva ◽  
Kethleen Mesquita da Silva ◽  
Isadora Campos Rattes ◽  
Gizela Maria Agostini Zonta ◽  
Aline Vasques da Costa ◽  
...  

Background: Gastric glands grow and cells reach differentiation at weaning in rats. By considering that early weaning (EW) can affect the timing of development, we aimed to compare molecular and cellular markers of differentiation in pups and adults. Methods: Wistar rats were separated into suckling-control (S) and EW groups at 15 days. Stomachs were collected at 15, 18, and 60 days for RNA and protein extraction, and morphology. Results: After EW, the expression of genes involved in differentiation (Atp4b, Bhlha15 and Pgc) augmented (18 days), and Atp4b and Gif were high at 60 days. EW increased the number of zymogenic cells (ZC) in pups and adults and augmented mucous neck cells only at 18 days, whereas parietal and transition cells (TC) were unchanged. Conclusions: EW affected the gastric mucosa mostly in a transient manner as the changes in gene expression and distribution of differentiated cells that were detected in pups were not fully maintained in adults, except for the size of ZC population. We concluded that though most of EW effects were immediate, such nutritional change in the infancy might affect part of gastric digestive functions in a permanent manner, as some markers were kept unbalanced in the adulthood.


2019 ◽  
Vol 36 (04) ◽  
pp. 223-230
Author(s):  
Lamai Thongboon ◽  
Sinlapachai Senarat ◽  
Jes Kettratad ◽  
Wannee Jiraungkoorskul ◽  
Sansareeya Wangkulangkul ◽  
...  

AbstractThe spotted bent-toed gecko Cyrtodactylus peguensis is one of the exploited reptiles in Thailand. In order to provide basic information for the digestive system of this species, we have examined histologically the gastrointestinal and accessory organs of C. peguensis using routine methods. The gastrointestinal region of this reptile started from the stomach and the intestine. The stomach was separated into fundic and pyloric regions. In both regions, the stomach wall was formed by four distinct tissue layers, including mucosa, submucosa, muscularis, and serosa layers. Mucous neck cells and oxynticopeptic cells were identified as glycoprotein-producing cells in the stomach by Periodic acid-Schiff (PAS) staining. The small and large intestines shared many histological characteristics, but the former contained more intestinal folds, while the latter had more PAS-positive goblet cells. Histological characteristics of accessory organs, liver and pancreas, were also provided. Overall, the gastrointestinal and accessory organs of C. peguensis were largely similar to those from other reptiles, but fine structural information will open up considerable opportunities to further studies related to the endocrinology, the physiology, and the conservation of this species.


2019 ◽  
Vol 16 (2) ◽  
pp. 0281
Author(s):  
AL –Nakeeb Et al.

          A histological study showed the wall of the stomach in Pica pica and Herpestes javanicus consists of four layers: mucosa, submucosa, muscularis externa and serosa. Also, the present study showed many  differences in the histological structures of the stomach for each in both types. The stomach of P. pica consists of two portions: the proventiculus and gizzard, while the stomach of H. javanicus consists of three portions: cardiac, fundic and pyloric regions. The mucosa layer formed short gastric folds, named plicae. In the proventiculus of P. pica, sulcus is found between each two plicae, but the folds called gastric pits in the gizzard, which are full with koilin. Lamina properia in both types contained gastric glands (straight simple tubular glands) named superficial glands, as well as another gastric gland found in the submucosa layer of the proventiculus in P. pica only named deep gastric glands. The gastric gland in the stomach of H. javanicus contained: mucous neck cells and parietal cells positive to AB/PAS stains in cardiac portion, as well as chief cells in fundic portion, but pyloric portion had just mucous neck cells. Muscularis externa in both types formed two muscle layers: inner and outer layer.


2019 ◽  
Vol 16 (2) ◽  
pp. 0281
Author(s):  
AL –Nakeeb Et al.

          A histological study showed the wall of the stomach in Pica pica and Herpestes javanicus consists of four layers: mucosa, submucosa, muscularis externa and serosa. Also, the present study showed many  differences in the histological structures of the stomach for each in both types. The stomach of P. pica consists of two portions: the proventiculus and gizzard, while the stomach of H. javanicus consists of three portions: cardiac, fundic and pyloric regions. The mucosa layer formed short gastric folds, named plicae. In the proventiculus of P. pica, sulcus is found between each two plicae, but the folds called gastric pits in the gizzard, which are full with koilin. Lamina properia in both types contained gastric glands (straight simple tubular glands) named superficial glands, as well as another gastric gland found in the submucosa layer of the proventiculus in P. pica only named deep gastric glands. The gastric gland in the stomach of H. javanicus contained: mucous neck cells and parietal cells positive to AB/PAS stains in cardiac portion, as well as chief cells in fundic portion, but pyloric portion had just mucous neck cells. Muscularis externa in both types formed two muscle layers: inner and outer layer.


2017 ◽  
Vol 49 (6) ◽  
pp. 746-750 ◽  
Author(s):  
Laura Gómez-Santos ◽  
Edurne Alonso ◽  
Lucio Díaz-Flores ◽  
Juan Francisco Madrid ◽  
Francisco José Sáez

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Clarice Machado-Santos ◽  
Adriana Alves Pelli-Martins ◽  
Marcelo Abidu-Figueiredo ◽  
Lycia de Brito-Gitirana

The stomach of Rhinella icterica was analyzed at light microscopy, employing histochemical techniques, lectin histochemistry, and immunohistochemistry for identifying enteroendocrine cells (EC). Although the stomach was composed of fundic and pyloric regions, its wall is formed by mucosa, submucosa, muscularis, and serosa. The mucosa was lined by a simple columnar mucous epithelium, supported by loose connective tissue. Several tubular, simple glands were composed of mucous neck cells, containing oxynticopeptic cells and EC cells. The mucous neck cells were rich in neutral glycoconjugates. The oxynticopeptic cells were predominant in fundic glands, exhibiting weaker alcianophilic reaction at their apical cytoplasm. Serotonin (5-HT) immunoreactive (IR) cells occurred throughout the entire stomach, preferentially located among mucous cells at upper part of the fundic glands. The muscularis mucosae, formed of smooth muscle, separated the mucosal layer from the submucosa, both of which were constituted by loose connective tissue, but without glands. Lymphoid modules occurred in the mucosa at the boundary at the stomach and the gut. In addition, the muscularis was constituted by two sublayers, the circular internal and the longitudinal external, being recovered by the connective tissue of the serosa.


2014 ◽  
Vol 62 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Roland Psáder ◽  
Csaba Jakab ◽  
Ákos Máthé ◽  
Gyula Balka ◽  
Kinga Pápa ◽  
...  

The aim of the present study was to investigate the expression pattern of claudin-1, -2, -3, -4, -5, -7, -8, -10 and -18 in the intact fundic and pyloric gastric mucosa of dogs. Intense, linear, membranous claudin-18 positivity was detected in the surface gastric cells and in the epithelial cells of the gastric glands both in the fundic and pyloric stomach regions. The mucous neck cells in the apical part of the glands, furthermore the parietal cells and chief cells of the basal part of the gland were all positive for claudin-18, in the same way as the enteroendocrine cells. Cells of the basal part of the pyloric glands showed intense, linear, membranous claudin-2 positivity, but cells of the superficial portion of these glands and the surface gastric cells in this region were claudin-2 negative. Fibroblasts, endothelial cells, lymphocytes of the propria layer, smooth muscle cells and vegetative neurons were all negative for claudin-2. All gastric epithelial cells were negative for claudin-1, -3, -4, -5, -6, -7, -8 and -10. The endothelial cells of the propria layer had intense claudin-5 positivity. We assume that claudin-18 forms a paracellular barrier against gastric acid in the healthy canine stomach, in the same way as in mice.


2013 ◽  
Vol 22 (7) ◽  
pp. 623-628 ◽  
Author(s):  
Thomas Arnason ◽  
Gregory Y. Lauwers
Keyword(s):  

2010 ◽  
Vol 79 (1) ◽  
pp. 48-56 ◽  
Author(s):  
Luciana H. Osaki ◽  
Marco A.F. Curi ◽  
Eliana P. Alvares ◽  
Patrícia Gama

2009 ◽  
Vol 296 (2) ◽  
pp. G185-G195 ◽  
Author(s):  
Lixin Zhu ◽  
Jason Hatakeyama ◽  
Bing Zhang ◽  
Joy Makdisi ◽  
Cody Ender ◽  
...  

ERM (ezrin, radixin, and moesin) proteins play critical roles in epithelial and endothelial cell polarity, among other functions. In gastric glands, ezrin is mainly expressed in acid-secreting parietal cells, but not in mucous neck cells or zymogenic chief cells. In looking for other ERM proteins, moesin was found lining the lumen of much of the gastric gland, but it was not expressed in parietal cells. No significant radixin expression was detected in the gastric glands. Moesin showed an increased gradient of expression from the neck to the base of the glands. In addition, the staining pattern of moesin revealed a branched morphology for the gastric lumen. This pattern of short branches extending from the glandular lumen was confirmed by using antibody against zonula occludens-1 (ZO-1) to stain tight junctions. With a mucous neck cell probe (lectin GSII, from Griffonia simplicifolia) and a chief cell marker (pepsinogen C), immunohistochemistry revealed that the mucous neck cells at the top of the glands do not express moesin, but, progressing toward the base, mucous cells showing decreased GSII staining had low or moderate level of moesin expression. The level of moesin expression continued to increase toward the base of the glands and reached a plateau in the base where chief cells and parietal cells abound. The level of pepsinogen expression also increased toward the base. Pepsinogen C was located on cytoplasmic granules and/or more generally distributed in chief cells, whereas moesin was exclusively expressed on the apical membrane. This is a clear demonstration of distinctive cellular expression of two ERM family members in the same tissue. The results provide the first evidence that moesin is involved in the cell biology of chief cells. Novel insights on gastric gland morphology revealed by the moesin and ZO-1 staining provide the basis for a model of cell maturation and migration within the gland.


Sign in / Sign up

Export Citation Format

Share Document