passive navigation
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Linlin Xia ◽  
Ruimin Liu ◽  
Daochang Zhang ◽  
Jingjing Zhang

Abstract Polarized skylight is as fundamental a constituent of passive navigation as geomagnetic field. In regards to its applicability to outdoor robot localization, a polarized light-aided VINS (abbreviates ‘visual-inertial navigation system’) modelization dedicated to globally optimized pose estimation and heading correction is constructed. The combined system follows typical visual SLAM (abbreviates ‘simultaneous localization and mapping’) frameworks, and we propose a methodology to fuse global heading measurements with visual and inertial information in a graph optimization based estimator. With ideas of ‘new-added attribute of each vertex and heading error encoded constraint edges’, the heading, as absolute orientation reference, is estimated by Berry polarization model and continuously updated in a graph structure. The formulized graph optimization process for multi-sensor fusion is simultaneously provided. In terms of campus road experiments on Bulldog-CX Robot platform, results are compared against purely stereo camera-dependent and VINS Fusion frameworks, revealing our design is substantially more accurate than others with both locally and globally consistent position and attitude estimates. As essentially passive, anatomically coupled and drifts calibratable navigation mode, the polarized light-aided VINS may therefore be considered as a tool candidate for a class of visual SLAM based multi-sensor fusion.


2021 ◽  
Author(s):  
Carlo Tiseo ◽  
Vladimir Ivan ◽  
Wolfgang Merkt ◽  
Ioannis Havoutis ◽  
Michael Mistry ◽  
...  

Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 803
Author(s):  
Yongjun Wang ◽  
Zhi Li ◽  
Xiang Li

The attitude and heading reference system (AHRS), which consists of tri-axial magnetometer, accelerometer, and gyroscope, has been widely adopted for three-dimensional attitude determination in recent years. It provides an economical means of passive navigation that only relies on gravity and geomagnetic fields. However, despite the advantages of small size, low cost, and low power, the magnetometer and accelerometer are susceptible to external disturbances, such as the magnetic interference from nearby ferromagnetic objects and current-carrying conductors, as well as the motional acceleration of the carrier. To eliminate such disturbances, a vector-based parallel structure is introduced for the attitude filter design, which can avoid the mutual interference between gravity and geomagnetic vectors. Meanwhile, an approach to estimate and compensate the external disturbances in real time for magnetometer and accelerometer is also presented. Compared with existing designs, the proposed filter architecture and external disturbance rejection algorithm can feasibly and effectively cooperate with mainstream data fusion techniques, including complementary filter and Kalman filter. According to experiment results, in the case that large and persistent external disturbances exist, the proposed method can improve the accuracy and robustness of attitude estimation, and it outperforms the existing methods such as switching filter and adaptive filter. Furthermore, through the experiments, the critical role of fading factor in handling the external disturbance is revealed.


2019 ◽  
Vol 72 (3) ◽  
pp. 513-527 ◽  
Author(s):  
Vicki Antrobus ◽  
David Large ◽  
Gary Burnett ◽  
Chrisminder Hare

Four on-road studies were conducted in the Clifton area of Nottingham, UK, aiming to explore the relationships between driver workload and environmental engagement associated with ‘active’ and ‘passive’ navigation systems. In a between-subjects design, a total of 61 experienced drivers completed two experimental drives comprising the same three routes (with overlapping sections), staged one week apart. Drivers were provided with the navigational support of a commercially-available navigation device (‘satnav’), an informed passenger (a stranger with expert route knowledge), a collaborative passenger (an individual with whom they had a close, personal relationship) or a novel interface employing a conversational natural language ‘NAV-NLI’ (Navigation Natural Language Interface). The NAV-NLI was created by curating linguistic intercourse extracted from the earlier conditions and delivering this using a ‘Wizard-of-Oz’ technique. This term describes a research experiment in which subjects interact with a computer system that they believe to be autonomous, but which is actually being operated or partially operated by an unseen human being. The different navigational methods were notable for their varying interactivity and the preponderance of environmental landmark information within route directions. Participants experienced the same guidance on each of the two drives to explore changes in reported and observed behaviour. Results show that participants who were more active in the navigation task (collaborative passenger or NAV-NLI) demonstrated enhanced environmental engagement (landmark recognition, route-learning and survey knowledge) allowing them to reconstruct the route more accurately post-drive, compared to drivers using more passive forms of navigational support (SatNav or informed passenger). Workload measures (the Tactile Detection Task (TDT) and the National Aeronautical and Space Administration Task Load Index (NASA-TLX)) indicated no differences between conditions, although SatNav users and collaborative passenger drivers reported lower workload during their second drive. The research demonstrates clear benefits and potential for a navigation system employing two-way conversational language to deliver instructions. This could help support a long-term perspective in the development of spatial knowledge, enabling drivers to become less reliant on the technology and begin to re-establish associations between viewing an environmental feature and the related navigational manoeuvre.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3284 ◽  
Author(s):  
Linlin Xia ◽  
Jingtong Geng ◽  
Hanrui Yang ◽  
Yunqi Wang ◽  
Zhaolong Fu ◽  
...  

The geomagnetic field is as fundamental a constituent of passive navigation as Earth’s gravity. In cases where no other external attitude reference is available, for the direct heading angle estimation by a typical magnetic compass, a two-step optimized correction algorithm is proposed to correct the model coefficients caused by hard and soft iron nearby. Specifically, in Step 1, a Levenberg-Marquardt (L-M) fitting estimator with an ellipsoid constraint is applied to solve the hard magnetic coefficients. In Step 2, a Lagrange multiplier estimator is used to deal with the soft magnetic iron circumstance. The essential attribute of “the two-step” lies in its eliminating the coupling effects of hard and soft magnetic fields, and their mutual interferences on the pure geomagnetic field. Under the conditions of non-deterministic magnetic interference sources with noise, the numerical simulation by referring to International Geomagnetic Reference Field (IGRF), and the laboratory tests based upon the turntable experiments with Honeywell HMR3000 compass (Honeywell, Morristown, NJ, USA) conducted, the experimental results indicate that, in the presence of the variation of multi-magnetic interferences, the RMSE (Root Mean Square Error) value of the estimated total magnetic flux density by the proposed two-step estimator falls to 0.125 μT from its initial 2.503 μT, and the mean values of the heading angle error estimates are less than 1°. The proposed solution therefore, exhibits ideal convergent properties, fairly meeting the accuracy requirements of non-tactical level navigation applications.


2016 ◽  
Vol 95 ◽  
pp. 322-328 ◽  
Author(s):  
Daniel Lorias-Espinoza ◽  
Vicente González Carranza ◽  
Fernando Chico-Ponce de León ◽  
Fernando Pérez Escamirosa ◽  
Arturo Minor Martinez

Author(s):  
AAKASH DAWADEE ◽  
JAVAAN CHAHL ◽  
D(NANDA) NANDAGOPAL ◽  
ZORICA NEDIC

Navigation has been a major challenge for the successful operation of an autonomous aircraft. Although success has been achieved using active methods such as radar, sonar, lidar and the global positioning system (GPS), such methods are not always suitable due to their susceptibility to jamming and outages. Vision, as a passive navigation method, is considered as an excellent alternative; however, the development of vision-based autonomous systems for outdoor environments has proven difficult. For flying systems, this is compounded by the additional challenges posed by environmental and atmospheric conditions. In this paper, we present a novel passive vision-based algorithm which is invariant to illumination, scale and rotation. We use a three stage landmark recognition algorithm and an algorithm for waypoint matching. Our algorithms have been tested in both synthetic and real-world outdoor environments demonstrating overall good performance. We further compare our feature matching method with the speed-up robust features (SURF) method with results demonstrating that our method outperforms the SURF method in feature matching as well as computational cost.


Sign in / Sign up

Export Citation Format

Share Document