scholarly journals On the application of estimation and correction algorithms in the system for measuring vibration parameters of aircraft structural elements

Author(s):  
Alexander A. Afonin ◽  
◽  
Andrey S. Sulakov ◽  
M.S. Maamo ◽  
◽  
...  

Nowadays, high-precision measurement of aircraft vibration parameters during its main operations modes, including in-flight operation mode, is still considered an important scientific and technical field of study and research. These kinds of measurements are usually conducted in order to analyze the airplane vibration properties and characteristics, which serves in diagnosing the state of its structure, predicting the appearance and development of defects and deformations, as well as to prevent or avoid the influence of dangerous phenomena such as flutter, buffeting, etc. In this article, the authors present the primary results of their work to build a system designed to measure such airplane vibration parameters. In comparison with the existing analogous systems, the new proposed system makes use of traditional vibrometric measurement methods in combination with approaches typical for solving orientation and navigation problems. So, the article discusses the principles of constructing a measurement system of vibration parameters of aircraft structural elements using the example of a system for measuring aircraft wing vibrations using MEMS IMU units and data fusion technology. A brief review of the main existing solutions in this research field is carried out, and the relevance and expediency of the proposed version of the system is substantiated. The basic components and structure of the proposed system are presented, including MEMS IMU units, a displacement sensor, and an onboard navigation system. The basic principles of the system operation are described based on the use of data from the displacement sensor, inertial measurements and optimal Kalman estimation. The main algorithms for the system operation are presented, including algorithms for inertial measurements, estimation and correction, as well as the actual algorithm for calculating vibration parameters. In addition, the mathematical errors models of the main measurements units of the system are presented. The article also presents simulation results, which are encouraging, and they demonstrate the performance of the system and its expected relatively high accuracy characteristics, which in turns confirms the expected efficiency of its application and the prospects of the chosen direction of research and development.

2021 ◽  
Vol 2096 (1) ◽  
pp. 012182
Author(s):  
A A Afonin ◽  
A S Sulakov ◽  
M S Maamo

Abstract This paper discusses the advantages of constructing a vibration parameters measurement system of an aircraft wing using mems IMUs. In addition to mems IMUs, the system makes use of displacement sensor and navigation system as secondary measurements, along with the optimal Kalman filter estimation. The basic principles of system operation are described. The main algorithms of the system and its errors mathematical model are presented. The results of simulation are presented, demonstrating the expected measurement accuracy of the system as a whole.


Author(s):  
А.А. Афонин ◽  
А.С. Сулаков ◽  
М.Ш. Маамо

В настоящее время в связи со всевозрастающей степенью сложности проектирования, производства и эксплуатации летательных аппаратов все более важным направлением в области развития информационно-измерительных систем становится совершенствование существующих и разработка новых способов измерения параметров вибрации элементов механических конструкций летательных аппаратов. Целью данной работы является анализ возможности и перспективности построения системы для измерения вибраций элементов конструкции самолета на основе использования микромеханических инерциальных измерительных блоков в качестве основных виброметрических измерителей. При этом объектом исследования является система измерения параметров вибрации, а предметом – ее структура, состав, алгоритмы функционирования и ожидаемые точностные характеристики. Для достижения поставленной цели строится информационно-измерительная система на базе инерциальных приборов, а также датчиков для непосредственных измерений перемещений, используются численные и аналитические методы высшей математики и теоретической механики, методы теории случайных процессов и оптимального оценивания. В статье рассмотрены принципы построения такой системы на примере варианта системы измерения параметров вибраций крыла самолета, представлен краткий обзор существующих решений в предметной области и обоснована актуальность и целесообразность предложенного варианта технического решения. Приведены базовый состав и структура системы, описаны основные принципы ее работы, основанные на использовании данных датчиков перемещения, инерциальных измерителей и оптимального калмановского оценивания и коррекции. Показаны основные алгоритмы работы системы, включая алгоритмы ориентации и навигации, оценивания и коррекции при замкнуто-разомкнутой схеме включения оптимального фильтра Калмана, алгоритм вычисления параметров вибрации, представленыматематические модели ошибок основных измерителей системы, показаны полученные предварительные результаты имитационного моделирования, демонстрирующие работоспособность системы и ее ожидаемые приемлемые точностные характеристики, подтверждающие возможность эффективного использования системы и перспективность выбранного направления работ. At present, because of the ever-increasing degree of complexity of aircrafts design, production and operation, the improvement of the existing methods and development of new ones for vibration parameters measurement of aircrafts mechanical structural elements is still an important direction in the field of information-measurement systems development. The purpose of this work is to analyze the possibility and prospects of constructing a system for measuring vibrations of aircraft structural elements based on the use of micromechanical inertial measurement units as the main vibrometric transducers. In this case, the object of research is the vibration parameters measurement system, and the subject is its structure, composition, operations algorithms and the expected accuracy characteristics. To achieve this purpose, an information-measurement system is built on the basis of inertial devices, as well as sensors for direct displacements measurements, numerical and analytical methods of higher mathematics and theoretical mechanics, methods of random processes theory and optimal estimation are used. The article discusses the principles of constructing such system taking as an example a system for measuring the vibration parameters of an aircraft wing, provides a brief overview of the existing solutions in this field of applications and substantiates the relevance and expediency of the proposed methodology of the technical solution. The basic components and structure of the system are presented, the basic principles of its operation are described, based on the use of data from displacement sensors, inertial meters and optimal Kalman estimation and correction. The main algorithms of the system operation are shown, including the orientation and navigation algorithm, estimation and correction algorithm for a closed-open scheme of optimal Kalman filter inclusion in the system, algorithm for calculating vibration parameters, beside the mathematical errors models of the main system sensors and channels are presented, preliminary results of simulation modeling are shown and they demonstrate the operability of the system and its expected acceptable accuracy characteristics, confirming the possibility of the effective use of the proposed system and the prospects of the chosen direction of work.


2021 ◽  
Vol 11 (16) ◽  
pp. 7558
Author(s):  
Tingting Gu ◽  
Xiaoming Qian ◽  
Peihuang Lou

The crankshaft online measurement system has realized the full inspection function with fast beats, at the same time it requires for high-precision measurement. Considering the effect of ambient temperature and temperature changes on measuring machine, the calibration part, the measured crankshaft and displacement sensor, a temperature compensation method is proposed. Firstly, relationship between calibration part and ambient temperature can be get through the zero calibration. Then use the material properties to obtain compensation values of the calibration part and the measured crankshaft part at different temperatures. Finally, the compensation parameters for displacement sensor can be obtained through the BP algorithm. The improved dragonfly algorithm (DA) is used to optimize the parameters of BP neural network algorithm. Experiments verify the effectiveness of IDA-BP for LVDT in temperature compensation. After temperature compensation, the error range of main journal radius is reduced from 0.0156 mm to 0.0028 mm, the residual error decreased from −0.0282 mm~+0.0018 mm to −0.0058 mm~−0.0008 mm. The influence of temperature changes on the measurement is reduced and measurement accuracy is improved through the temperature compensation method. The effectiveness of the method is proved.


2013 ◽  
Vol 805-806 ◽  
pp. 52-57
Author(s):  
Yue Ren Wang ◽  
Xiao Zhang ◽  
Yong Qiang Fang

From the viewpoint of improving heating quality and saving energy, the paper proposes the use of Joint Heating Systems about Solar Collectors and Ground Source Heat Pump (JHSSCGSHP). The typical architecture in Shenyang is analyzed about dynamic simulation by the use of JHSSCGSHP. MATLAB is used to operate comparative analysis of simulation. It focuses on the impact of water temperature of inlet and outlet of heat pump systems in different series of separate heating of ground source heat pump and JHSSCGSHP. Thus the influence of the system operation efficiency based on different operation modes is compared.


2014 ◽  
Vol 997 ◽  
pp. 814-820
Author(s):  
Xi Mu Yu

Many uncertain factors influence the assessment of voltage sag frequency (VSF), such as system operation modes, the fault rates of components and fault locations. In existing methods these factors are considered constant resulting in reasonless results. In this study, the uncertain property of fault location, system operation mode and failure rate of component are integrated to assess the VSF for the first time. The maximum entropy principle, typical operation modes and time-varying rate are used for characterizing the uncertainty of these factors. The assessing method and approaches are presented. Three cases considered different conditions are simulated on IEEE-30 standard testing system. The proposed method compared with Monte Carlo Simulation has been shown that it is reasonable and accurate and with good academic value and practical foreground.


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Danwen Bao ◽  
Songyi Hua

This study’s goal is to reduce the number of flights and alleviate congestion in hub airports. It proposes a flight time and frequency-optimization method for multiairport systems. A flight time and frequency-optimization model for multiairport system operation is created to minimize loss of passenger trip time. A k-means clustering algorithm is designed to solve the model and calculate indexes such as flight time and frequency, passenger trip-time loss, and distribution of airplane models and quantity. The calculation results of an example in China are as follows. Under multiairport system operation mode, passenger demands are divided into 7 categories; 11 flights satisfy all passenger demands; passenger trip-time loss is 129,573 min; and the average passenger load factor is 90.1%. Under an independent operation mode, passenger demands are divided into 8 categories; 13 flights satisfy all passenger demands; passenger trip-time loss is 173,705 min; and the average passenger load factor is 87.4%. The multiairport system operation mode not only improves passenger trip efficiency but also benefits airlines by improving the passenger load factor and reducing flights. Moreover, comparative analysis of a genetic algorithm versus a clustering algorithm further proves the accuracy of the clustering algorithm.


Sign in / Sign up

Export Citation Format

Share Document