glycyl radical enzyme
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 15)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Anna G. Burrichter ◽  
Stefanie Dörr ◽  
Paavo Bergmann ◽  
Sebastian Haiß ◽  
Anja Keller ◽  
...  

Abstract Background Bilophila wadsworthia, a strictly anaerobic, sulfite-reducing bacterium and common member of the human gut microbiota, has been associated with diseases such as appendicitis and colitis. It is specialized on organosulfonate respiration for energy conservation, i.e., utilization of dietary and host-derived organosulfonates, such as taurine (2-aminoethansulfonate), as sulfite donors for sulfite respiration, producing hydrogen sulfide (H2S), an important intestinal metabolite that may have beneficial as well as detrimental effects on the colonic environment. Its taurine desulfonation pathway involves the glycyl radical enzyme (GRE) isethionate sulfite-lyase (IslAB), which cleaves isethionate (2-hydroxyethanesulfonate) into acetaldehyde and sulfite. Results We demonstrate that taurine metabolism in B. wadsworthia 3.1.6 involves bacterial microcompartments (BMCs). First, we confirmed taurine-inducible production of BMCs by proteomic, transcriptomic and ultra-thin sectioning and electron-microscopical analyses. Then, we isolated BMCs from taurine-grown cells by density-gradient ultracentrifugation and analyzed their composition by proteomics as well as by enzyme assays, which suggested that the GRE IslAB and acetaldehyde dehydrogenase are located inside of the BMCs. Finally, we are discussing the recycling of cofactors in the IslAB-BMCs and a potential shuttling of electrons across the BMC shell by a potential iron-sulfur (FeS) cluster-containing shell protein identified by sequence analysis. Conclusions We characterized a novel subclass of BMCs and broadened the spectrum of reactions known to take place enclosed in BMCs, which is of biotechnological interest. We also provided more details on the energy metabolism of the opportunistic pathobiont B. wadsworthia and on microbial H2S production in the human gut.


2021 ◽  
Author(s):  
Casey M Theriot ◽  
Amber D Reed ◽  
Joshua R Fletcher ◽  
Yue (Yolanda) Huang ◽  
Rajani Thanissery ◽  
...  

An intact gut microbiota confers colonization resistance against Clostridioides difficile through a variety of mechanisms, likely including competition for nutrients. Recently, proline was identified as an important environmental amino acid that C. difficile uses to support growth and cause significant disease. The ability to dehydrate trans-4-hydroxyproline via the HypD glycyl radical enzyme is widespread amongst gut microbiota, including C. difficile and members of the commensal Clostridia, suggesting that this amino acid is an important nutrient in the host environment. Therefore, we constructed a C. difficile ΔhypD mutant and found that it was modestly impaired in fitness in a mouse model of infection, and was associated with an altered microbiota when compared to mice challenged with the wild type strain. Changes in the microbiota between the two groups were largely driven by members of the Lachnospiraceae family and the Clostridium genus. We found that C. difficile and type strains of three commensal Clostridia had significant alterations to their metabolic gene expression in the presence of trans-4-hydroxyproline in vitro. The proline reductase (prd) genes were elevated in C. difficile, consistent with the hypothesis that trans-4-hydroxyproline is used by C. difficile to supply proline for fermentation. Similar transcripts were also elevated in some commensal Clostridia tested, although each strain responded differently. This suggests that the uptake and utilization of other nutrients by the commensal Clostridia may be affected by trans-4-hydroxyproline metabolism, highlighting how a common nutrient may be a signal to each organism to adapt to a unique niche.


2021 ◽  
Author(s):  
Anna G. Burrichter ◽  
Stefanie Doerr ◽  
Paavo Bergmann ◽  
Sebastian Haiss ◽  
Anja Keller ◽  
...  

Background: Bilophila wadsworthia, a strictly anaerobic, sulfite-reducing bacterium and common member of the human gut microbiota, has been associated with diseases such as appendicitis and colitis. It is specialized on organosulfonate respiration for energy conservation, i.e., utilization of dietary and host-derived organosulfonates, such as taurine (2 aminoethansulfonate), as sulfite donors for sulfite respiration, producing hydrogen sulfide (H2S), an important intestinal metabolite that may have beneficial as well as detrimental effects on the colonic environment. Its taurine desulfonation pathway involves a glycyl radical enzyme (GRE), isethionate sulfite-lyase (IslAB), which cleaves isethionate (2 hydroxyethane sulfonate) into acetaldehyde and sulfite. Results: We demonstrate that taurine metabolism in B. wadsworthia 3.1.6 involves bacterial microcompartments (BMCs). First, we confirmed taurine-inducible production of BMCs by proteomic, transcriptomic and ultra-thin sectioning and electron-microscopical analyses. Then, we isolated BMCs from taurine-grown cells by density-gradient ultracentrifugation and analyzed their composition by proteomics as well as by enzyme assays, which suggested that the GRE IslAB and acetaldehyde dehydrogenase are located inside of the BMCs. Finally, we are discussing the recycling of cofactors in the IslAB-BMCs and a potential shuttling of electrons across the BMC shell by a potential iron-sulfur (FeS) cluster-containing shell protein identified by sequence analysis. Conclusions: We characterized a novel subclass of BMCs and broadened the spectrum of reactions known to take place enclosed in BMCs, which is of biotechnological interest. We also provided more details on the energy metabolism of the opportunistic pathobiont B. wadsworthia and on microbial H2S production in the human gut.


ACS Catalysis ◽  
2021 ◽  
pp. 5789-5794
Author(s):  
Qiang Lu ◽  
Yifeng Wei ◽  
Lianyun Lin ◽  
Jiayi Liu ◽  
Yongxu Duan ◽  
...  

ACS Catalysis ◽  
2021 ◽  
pp. 3361-3370
Author(s):  
Iryna Salii ◽  
Maciej Szaleniec ◽  
Ammar Alhaj Zein ◽  
Deniz Seyhan ◽  
Anna Sekuła ◽  
...  

Author(s):  
Christopher D. Dawson ◽  
Stephania M. Irwin ◽  
Lindsey R.F. Backman ◽  
Chip Le ◽  
Jennifer X. Wang ◽  
...  

2020 ◽  
Vol 8 (5) ◽  
pp. 681 ◽  
Author(s):  
Ingrid Meyer-Cifuentes ◽  
Sylvie Gruhl ◽  
Sven-Bastiaan Haange ◽  
Vanessa Lünsmann ◽  
Nico Jehmlich ◽  
...  

The facultative denitrifying alphaproteobacterium Magnetospirillum sp. strain 15-1 had been isolated from the hypoxic rhizosphere of a constructed wetland model fed with toluene. This bacterium can catabolize toluene anaerobically but not aerobically. Here, we used strain 15-1 to investigate regulation of expression of the highly oxygen-sensitive glycyl radical enzyme benzylsuccinate synthase, which catalyzes the first step in anaerobic toluene degradation. In cells growing aerobically with benzoate, the addition of toluene resulted in a ~20-fold increased transcription of bssA, encoding for the catalytically active subunit of the enzyme. Under anoxic conditions, bssA mRNA copy numbers were up to 129-fold higher in cells growing with toluene as compared to cells growing with benzoate. Proteomics showed that abundance of benzylsuccinate synthase increased in cells growing anaerobically with toluene. In contrast, peptides of this enzyme were never detected in oxic conditions. These findings show that synthesis of benzylsuccinate synthase was under stringent post-transcriptional control in the presence of oxygen, which is a novel level of regulation for glycyl radical enzymes.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Lindsey RF Backman ◽  
Yolanda Y Huang ◽  
Mary C Andorfer ◽  
Brian Gold ◽  
Ronald T Raines ◽  
...  

The glycyl radical enzyme (GRE) superfamily utilizes a glycyl radical cofactor to catalyze difficult chemical reactions in a variety of anaerobic microbial metabolic pathways. Recently, a GRE, trans-4-hydroxy-L-proline (Hyp) dehydratase (HypD), was discovered that catalyzes the dehydration of Hyp to (S)-Δ1-pyrroline-5-carboxylic acid (P5C). This enzyme is abundant in the human gut microbiome and also present in prominent bacterial pathogens. However, we lack an understanding of how HypD performs its unusual chemistry. Here, we have solved the crystal structure of HypD from the pathogen Clostridioides difficile with Hyp bound in the active site. Biochemical studies have led to the identification of key catalytic residues and have provided insight into the radical mechanism of Hyp dehydration.


2020 ◽  
Author(s):  
Lindsey RF Backman ◽  
Yolanda Y Huang ◽  
Mary C Andorfer ◽  
Brian Gold ◽  
Ronald T Raines ◽  
...  

2020 ◽  
Author(s):  
Christopher D. Dawson ◽  
Stephania Irwin ◽  
Lindsey Backman ◽  
Catherine Drennan ◽  
Emily Balskus

Sign in / Sign up

Export Citation Format

Share Document