loop layout problem
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 5
Author(s):  
Gintaras Palubeckis

In the bidirectional loop layout problem (BLLP), we are given a set of machines, a set of locations arranged in a loop configuration, and a flow cost matrix. The problem asks to assign machines to locations so as to minimize the sum of the products of the flow costs and distances between machines. The distance between two locations is calculated either in the clockwise or in the counterclockwise direction, whichever path is shorter. We propose a hybrid approach for the BLLP which combines the simulated annealing (SA) technique with the variable neighborhood search (VNS) method. The VNS algorithm uses an innovative local search technique which is based on a fast insertion neighborhood exploration procedure. The computational complexity of this procedure is commensurate with the size of the neighborhood, that is, it performs O(1) operations per move. Computational results are reported for BLLP instances with up to 300 machines. They show that the SA and VNS hybrid algorithm is superior to both SA and VNS used stand-alone. Additionally, we tested our algorithm on two sets of benchmark tool indexing problem instances. The results demonstrate that our hybrid technique outperforms the harmony search (HS) heuristic which is the state-of-the-art algorithm for this problem. In particular, for the 4 Anjos instances and 4 sko instances, new best solutions were found. The proposed algorithm provided better average solutions than HS for all 24 Anjos and sko instances. It has shown robust performance on these benchmarks. For 20 instances, the best known solution was obtained in more than 50% of the runs. The average time per run was below 10 s. The source code implementing our algorithm is made publicly available as a benchmark for future comparisons.


2010 ◽  
Vol 37-38 ◽  
pp. 116-121
Author(s):  
Yu Lan Li ◽  
Bo Li ◽  
Su Jun Luo

In the facility layout decisions, the previous general design principle is to minimize material handling costs, and the objective of these old models only considers the costs of loaded trip, without regard to empty vehicle trip costs, which do not meet the actual demand. In this paper, the unequal-sized unidirectional loop layout problem is analyzed, and the model of facility layout is improved. The objective of the new model is to minimize the total loaded and empty vehicle trip costs. To solve this model, a heuristic algorithm based on partheno-genetic algorithms is designed. Finally, an unequal-sized unidirectional loop layout problem including 12 devices is simulated. Comparison shows that the result obtained using the proposed model is 20.4% better than that obtained using the original model.


Sign in / Sign up

Export Citation Format

Share Document