An Unequal-Sized Unidirectional Loop Layout Design Problem Considering Empty Vehicle Trip

2010 ◽  
Vol 37-38 ◽  
pp. 116-121
Author(s):  
Yu Lan Li ◽  
Bo Li ◽  
Su Jun Luo

In the facility layout decisions, the previous general design principle is to minimize material handling costs, and the objective of these old models only considers the costs of loaded trip, without regard to empty vehicle trip costs, which do not meet the actual demand. In this paper, the unequal-sized unidirectional loop layout problem is analyzed, and the model of facility layout is improved. The objective of the new model is to minimize the total loaded and empty vehicle trip costs. To solve this model, a heuristic algorithm based on partheno-genetic algorithms is designed. Finally, an unequal-sized unidirectional loop layout problem including 12 devices is simulated. Comparison shows that the result obtained using the proposed model is 20.4% better than that obtained using the original model.

Author(s):  
Mostafa Zandieh ◽  
Seyed Shamsodin Hosseini ◽  
parham azimi ◽  
Mani Sharifi

This paper deals with dynamic facility layout problem (DFLP) in a plant which is concerned with determining the best position of machines in the plant during a multi-period planning horizon. The material handling costs and machines rearrangement costs are used to determine the best layout. In addition to positions of machines, the details of transportation such as type of transporters and sequence of transportation operations have a direct effect on MHC. Therefore, it is more realistic to consider the transportation details during DFLP optimization. This paper proposes a new mathematical model to simultaneously determine the best position of machines in each period and to plan the transportation operations. Minimizing sum of MHC and MRC is considered as the objective function. A new hybrid meta-heuristic approach has been developed by combining modified genetic algorithm and cloud-based simulated annealing algorithm to solve the model. Finally, the proposed methodology is compared with two meta-heuristics on a set of test problems.


2020 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Kuswanto Kuswanto ◽  
Juan Junius ◽  
Anita Christine Sembiring

Facility layout is integrated planning of the flow of a product in an operating system to obtain the most effective and efficient interrelation between workers, materials, machinery, and equipment as well as handling and transferring materials. A company engaged in furniture manufacturing has a problem in its production process, namely, the distance between machines is too far so that it affects the cost of handling materials. Distant workstations are found on profile machines, milling machines, measuring machines, cutting machines. Therefore, improvements must be made to the layout of facilities on the production floor so that facility layout is efficient and material handling costs are reduced. The problem-solving approach used is the Graph Method and CRAFT Algorithm. The results of the research show that material handling costs are reduced by 7.58% or Rp. 17,765 using the CRAFT algorithm.


2003 ◽  
Vol 125 (4) ◽  
pp. 740-752
Author(s):  
Shahrukh Irani ◽  
Jin Zhou ◽  
Heng Huang

Facility layout and flexible automation are two approaches for reduction of material handling costs and space requirements in a machining facility that have always been implemented independently of each other. This paper describes an integrated approach to compaction of existing machining facilities using machine grouping algorithms and multi-function machining centers, also referred to as Flexible Machining Modules (FMMs). First, we decompose a facility into a network of layout modules to reduce product travel distances and simplify material flow control. Then, subject to design feasibility, we identify those sets of machines in each module that could be replaced by multi-function FMMs that could be linked into a Flexible Machining System (FMS). The proposed approach uses a combination of pattern recognition and graph theory algorithms utilized for facility layout. The paper concludes with a description of a validation study conducted in an aerospace machining jobshop.


2016 ◽  
Vol 40 (2) ◽  
pp. 375-388 ◽  
Author(s):  
Marko Filipović ◽  
Stjepan Bogdan ◽  
Tamara Petrović

This article focuses on the robot workstation layout problem and briefly discusses a recovery control strategy. Since present industrial workstations utilize a flexible manufacturing cell served by a robot, researchers in this field try to find the best method determining the physical organization of resources in available space. As solving the facility layout problem (FLP) might reduce material handling expenses, the most common objective in these approaches is to minimize the material handling costs. Our work introduces a new approach in obtaining the optimal positions of resources in a robot workstation where considerable contribution to the final layout design comes from the failure recovery data. The optimization criteria include material flow and transportation cost as the standard FLP objectives. In our approach we also consider the resource rate of failure and treatment quality as a part of the failure recovery. The optimization problems were solved with the state of the art optimization algorithm for the nonlinear optimization problems. The computational results of the study are discussed and analysed on the basis of a real industrial application. The commonly used objective function is compared to the proposed objective function extended with the failure recovery. As an important part of the failure recovery strategy, making the proper recovery decision in the workstation control design is also discussed.


Sign in / Sign up

Export Citation Format

Share Document