curvature force
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 445
Author(s):  
Bahram Mashhoon

A heuristic description of the spin-rotation-gravity coupling is presented and the implications of the corresponding gravitomagnetic Stern–Gerlach force are briefly mentioned. It is shown, within the framework of linearized general relativity, that the gravitomagnetic Stern–Gerlach force reduces in the appropriate correspondence limit to the classical Mathisson spin-curvature force.



2020 ◽  
Vol 635 ◽  
pp. A202
Author(s):  
B. Löptien ◽  
A. Lagg ◽  
M. van Noort ◽  
S. K. Solanki

Context. In sunspots, the geometric height of continuum optical depth unity is depressed compared to the quiet Sun. This so-called Wilson depression is caused by the Lorentz force of the strong magnetic field inside the spots. However, it is not understood in detail yet how the Wilson depression is related to the strength and geometry of the magnetic field or to other properties of the sunspot. Aims. We aim to study the dependence of the Wilson depression on the properties of the magnetic field of the sunspots and how exactly the magnetic field contributes to balancing the Wilson depression with respect to the gas pressure of the surroundings of the spots. Methods. Our study is based on 24 spectropolarimetric scans of 12 individual sunspots performed with Hinode. We derived the Wilson depression for each spot using both a recently developed method that is based on minimizing the divergence of the magnetic field and an approach that was developed earlier, which enforces an equilibrium between the gas pressure and the magnetic pressure inside the spot and the gas pressure in the quiet Sun, thus neglecting the influence of the curvature force. We then performed a statistical analysis by comparing the Wilson depression resulting from the two techniques with each other and by relating them to various parameters of the sunspots, such as their size or the strength of the magnetic field. Results. We find that the Wilson depression becomes larger for spots with a stronger magnetic field, but not as much as one would expect from the increased magnetic pressure. This suggests that the curvature integral provides an important contribution to the Wilson depression, particularly for spots with a weak magnetic field. Our results indicate that the geometry of the magnetic field in the penumbra is different between spots with different strengths of the average umbral magnetic field.





Author(s):  
Arbab Arbab

A photon inside a gravitational eld dened by the accelerates g is found to have a gravitational mass given by mg = (ћ=2c3)g, where ћ is the reduced Planck's constant, and c is the speed of light in vacuum. This force is equivalent to the curvature force introduced by Einstein's general relativity. These photons behave like the radiation emitted by a black hole. A black hole emitting such a radiation develops an entropy that is found to increase linearly with black hole mass, and inversely with the photon mass. Based on this, the entropy of a solar black hole emitting photons of mass ~10-33eV amounts to ~1077 kB. The created photons could be seen as resulting from quantum fluctuation during an uncertainty time given by Δt = c/g. The gravitational force on the photon is that of an entropic nature, and varies inversely with the square of the entropy. The power of the massive photon radiation is found to be analogous to Larmor power of an accelerating charge.



2014 ◽  
Vol 106 (2) ◽  
pp. 361a
Author(s):  
Wim Pomp ◽  
Hedde van Hoorn ◽  
Thomas Schmidt


2013 ◽  
Vol 87 (4) ◽  
Author(s):  
Wei Chieh Liang ◽  
Si Chen Lee


2003 ◽  
Vol 5 ◽  
pp. 85-85 ◽  
Author(s):  
Alexander B Balakin ◽  
Diego Pav n ◽  
Dominik J Schwarz ◽  
Winfried Zimdahl
Keyword(s):  


2000 ◽  
Vol 18 (9) ◽  
pp. 1027-1042 ◽  
Author(s):  
M. Lockwood ◽  
I. W. McCrea ◽  
S. E. Milan ◽  
J. Moen ◽  
J. C. Cerisier ◽  
...  

Abstract. We report high-resolution observations of the southward-IMF cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter) Svalbard radar (ESR), and compare them with observations of dayside auroral luminosity, as seen at a wavelength of 630 nm by a meridian scanning photometer at Ny Ålesund, and of plasma flows, as seen by the CUTLASS (co-operative UK twin location auroral sounding system) Finland HF radar. The optical data reveal a series of poleward-moving transient red-line (630 nm) enhancements, events that have been associated with bursts in the rate of magnetopause reconnection generating new open flux. The combined observations at this time have strong similarities to predictions of the effects of soft electron precipitation modulated by pulsed reconnection, as made by Davis and Lockwood (1996); however, the effects of rapid zonal flow in the ionosphere, caused by the magnetic curvature force on the newly opened field lines, are found to be a significant additional factor. In particular, it is shown how enhanced plasma loss rates induced by the rapid convection can explain two outstanding anomalies of the 630 nm transients, namely how minima in luminosity form between the poleward-moving events and how events can re-brighten as they move poleward. The observations show how cusp/cleft aurora and transient poleward-moving auroral forms appear in the ESR data and the conditions which cause enhanced 630 nm emission in the transients: they are an important first step in enabling the ESR to identify these features away from the winter solstice when supporting auroral observations are not available.Key words: Ionosphere (polar ionosphere) - Magnetospheric physics (magnetopause; cusp and boundary layers; solar wind-magnetosphere interactions)



Sign in / Sign up

Export Citation Format

Share Document