scholarly journals Connecting the Wilson depression to the magnetic field of sunspots

2020 ◽  
Vol 635 ◽  
pp. A202
Author(s):  
B. Löptien ◽  
A. Lagg ◽  
M. van Noort ◽  
S. K. Solanki

Context. In sunspots, the geometric height of continuum optical depth unity is depressed compared to the quiet Sun. This so-called Wilson depression is caused by the Lorentz force of the strong magnetic field inside the spots. However, it is not understood in detail yet how the Wilson depression is related to the strength and geometry of the magnetic field or to other properties of the sunspot. Aims. We aim to study the dependence of the Wilson depression on the properties of the magnetic field of the sunspots and how exactly the magnetic field contributes to balancing the Wilson depression with respect to the gas pressure of the surroundings of the spots. Methods. Our study is based on 24 spectropolarimetric scans of 12 individual sunspots performed with Hinode. We derived the Wilson depression for each spot using both a recently developed method that is based on minimizing the divergence of the magnetic field and an approach that was developed earlier, which enforces an equilibrium between the gas pressure and the magnetic pressure inside the spot and the gas pressure in the quiet Sun, thus neglecting the influence of the curvature force. We then performed a statistical analysis by comparing the Wilson depression resulting from the two techniques with each other and by relating them to various parameters of the sunspots, such as their size or the strength of the magnetic field. Results. We find that the Wilson depression becomes larger for spots with a stronger magnetic field, but not as much as one would expect from the increased magnetic pressure. This suggests that the curvature integral provides an important contribution to the Wilson depression, particularly for spots with a weak magnetic field. Our results indicate that the geometry of the magnetic field in the penumbra is different between spots with different strengths of the average umbral magnetic field.

2018 ◽  
Vol 615 ◽  
pp. A35 ◽  
Author(s):  
De-Fu Bu ◽  
Amin Mosallanezhad

Context. Observations indicate that wind can be generated in hot accretion flow. Wind generated from weakly magnetized accretion flow has been studied. However, the properties of wind generated from strongly magnetized hot accretion flow have not been studied. Aims. In this paper, we study the properties of wind generated from both weakly and strongly magnetized accretion flow. We focus on how the magnetic field strength affects the wind properties. Methods. We solve steady-state two-dimensional magnetohydrodynamic equations of black hole accretion in the presence of a largescale magnetic field. We assume self-similarity in radial direction. The magnetic field is assumed to be evenly symmetric with the equatorial plane. Results. We find that wind exists in both weakly and strongly magnetized accretion flows. When the magnetic field is weak (magnetic pressure is more than two orders of magnitude smaller than gas pressure), wind is driven by gas pressure gradient and centrifugal forces. When the magnetic field is strong (magnetic pressure is slightly smaller than gas pressure), wind is driven by gas pressure gradient and magnetic pressure gradient forces. The power of wind in the strongly magnetized case is just slightly larger than that in the weakly magnetized case. The power of wind lies in a range PW ~ 10−4–10−3 Ṁinc2, with Ṁin and c being mass inflow rate and speed of light, respectively. The possible role of wind in active galactic nuclei feedback is briefly discussed.


2018 ◽  
Vol 14 (S342) ◽  
pp. 201-204
Author(s):  
Xinwu Cao

AbstractIt is still a mystery why only a small fraction of quasars contain relativistic jets. A strong magnetic field is a necessary ingredient for jet formation. Gas falls from the Bondi radius RB nearly freely to the circularization radius Rc, and a thin accretion disk is formed within Rc We suggest that the external weak magnetic field threading interstellar medium is substantially enhanced in this region, and the magnetic field at Rc can be sufficiently strong to drive outflows from the disk if the angular velocity of the gas is low at RB. In this case, the magnetic field is efficiently dragged in the disk, because most angular momentum of the disk is removed by the outflows that lead to a significantly high radial velocity. The strong magnetic field formed in this way may accelerate jets in the region near the black hole, either by the Blandford-Payne or/and Blandford-Znajek mechanisms. If the angular velocity of the circumnuclear gas is low, the field advection in the thin disk is inefficient, and it will appear as a radio-quiet (RQ) quasar.


2012 ◽  
Vol 116 (33) ◽  
pp. 17676-17681 ◽  
Author(s):  
Z.H.I. Sun ◽  
X. Guo ◽  
M. Guo ◽  
C. Li ◽  
J. Vleugels ◽  
...  

1977 ◽  
Vol 17 (1) ◽  
pp. 93-103 ◽  
Author(s):  
N. F. Cramer

The parametric excitation of slow, intermediate (Alfvén) and fast magneto-acoustic waves by a modulated spatially non-uniform magnetic field in a plasma with a finite ratio of gas pressure to magnetic pressure is considered. The waves are excited in pairs, either pairs of the same mode, or a pair of different modes. The growth rates of the instabilities are calculated and compared with the known result for the Alfvén wave in a zero gas pressure plasma. The only waves that are found not to be excited are the slow plus fast wave pair, and the intermediate plus slow or fast wave pair (unless the waves have a component of propagation direction perpendicular to both the background magnetic field and the direction of non-uniformity of the field).


Soft Matter ◽  
2016 ◽  
Vol 12 (4) ◽  
pp. 1279-1294 ◽  
Author(s):  
Alena Antipova ◽  
Colin Denniston

We explain the motion of a micron-sized ferromagnetic disc immersed in a nematic liquid crystal under the action of a weak magnetic field using numerical simulations. We show that the disc's behaviour can be controlled by the angular speed of the magnetic field and its magnitude.


2006 ◽  
Vol 15 (06) ◽  
pp. 1263-1271 ◽  
Author(s):  
A. SOYLU ◽  
O. BAYRAK ◽  
I. BOZTOSUN

In this paper, the energy eigenvalues of the two dimensional hydrogen atom are presented for the arbitrary Larmor frequencies by using the asymptotic iteration method. We first show the energy eigenvalues for the case with no magnetic field analytically, and then we obtain the energy eigenvalues for the strong and weak magnetic field cases within an iterative approach for n=2-10 and m=0-1 states for several different arbitrary Larmor frequencies. The effect of the magnetic field on the energy eigenvalues is determined precisely. The results are in excellent agreement with the findings of the other methods and our method works for the cases where the others fail.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
S. Villalba-Chávez ◽  
A. E. Shabad ◽  
C. Müller

AbstractFor magnetic fields larger than the characteristic scale linked to axion-electrodynamics, quantum vacuum fluctuations due to axion-like fields can dominate over those associated with the electron-positron fields. This conjecture is explored by investigating both the axion-modified photon capture by a strong magnetic field and the Coulomb potential of a static pointlike charge. We show that in magnetic fields characteristic of neutron stars $$\sim 10^{13}$$ ∼ 10 13 –$$10^{15}\;\mathrm{G}$$ 10 15 G , the capture of gamma photons prior to the production of a pair can prevent the existence of an electron-positron plasma, essential for explaining the pulsar radiation mechanism. This incompatibility is used to limit the axion parameter space. Our bounds improve existing outcomes in the region of mass $$m\sim 10^{-10}$$ m ∼ 10 - 10 –$$10^{-5}\;{\mathrm{eV}}$$ 10 - 5 eV . The effect of capture, known in QED as relating to gamma-quanta, is extended in axion electrodynamics to include X-ray photons with the result that a specially polarized part of the heat radiation from the surface is canalized along the magnetic field. Besides, we find that in the regime in which the dominance takes place, the running QED coupling depends on the field strength and the modified Coulomb potential is of Yukawa-type in the direction perpendicular to the magnetic field at distances much smaller than the axion Compton wavelength, while along the field it follows approximately the Coulomb law at any length scale. Despite the Coulomb singularity manifested in the latter case, we argue that the ground-state energy of a non-relativistic hydrogen atom placed in a strong magnetic field turns out to be bounded due to the nonrenormalizable feature of axion-electrodynamics.


1981 ◽  
Vol 34 (3) ◽  
pp. 279 ◽  
Author(s):  
I Lerche

An investigation is made of the self-similar flow behind a cylindrical blast wave from a line explosion (situated on r = 0, using conventional cylindrical coordinates r, 4>, z) in a medium whose density and magnetic field both vary as r -w ahead of the blast front, with the assumption that the flow is isothermal. The magnetic field can have components in both the azimuthal B(jJ and longitudinal B, directions. It is found that: (i) For B(jJ =f:. 0 =f:. B, a continuous single-valued solution with a velocity field representing outflow of material away from the line of explosion does not exist for OJ OJ > 0 the governing equation possesses a set of movable critical points. In this case it is shown that the fluid flow velocity is bracketed between two curves and that the asymptotes of the velocity curve on the shock are intersected by, or are tangent to, the two curves. Thus a solution always exists in the physical domain r ~ o. The overall conclusion from the investigation is that the behaviour of isothermal blast waves in the presence of an ambient magnetic field differs substantially from the behaviour calculated for no magnetic field. These results have an impact upon previous applications of the theory of self-similar flows to evolving supernova remnants without allowance for the dynamical influence of magnetic pressure and magnetic tension.


1997 ◽  
Vol 57 (2) ◽  
pp. 235-245 ◽  
Author(s):  
B. C. KALITA ◽  
R. P. BHATTA

Kinetic Alfvén solitons with hot electrons and finite electron inertia in a low-beta (β=8πn0T/B2G, the ratio of the kinetic to the magnetic pressure) plasma is studied analytically, with the ion motion being considered dominant through the polarization drift. Both compressive and rarefactive kinetic Alfvén solitons are found to exist within a definite range of kz (the direction of propagation of the kinetic Alfvén solitary waves with respect to the direction of the magnetic field) for each pair of assigned values of β and M (Mach number). Unlike in previous theoretical investigations, β appears as an explicit parameter for the kinetic Alfvén solitons in this case. In addition, consideration of the electron pressure gradient is found to suppress the speed of both the Alfvén solitons considerably for A (=2QM2/βk2z, with Q the electron-to-ion mass ratio) less than unity.


2007 ◽  
Vol 22 (19) ◽  
pp. 3305-3315 ◽  
Author(s):  
JING-JING LIU ◽  
ZHI-QUAN LUO ◽  
HONG-LIN LIU ◽  
XIANG-JUN LAI

The neutrino energy loss rates on iron group nuclei by electron capture are calculated in a strong magnetic field at the crusts of Neutron stars. The results show that the magnetic field has only a slight effect on the neutrino energy loss rates in a range of 108–1013 G on surfaces of the most neutron stars. Whereas for some magnetars which range of the magnetic field is 1013–1018 G, the neutrino energy loss rates of the most iron group nuclei would be debased greatly and may be even decreased for 4 orders of magnitude by the strong magnetic field.


Sign in / Sign up

Export Citation Format

Share Document