linear micropolar elasticity
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Yuri N. Radayev ◽  

The present study concerns the coupled vector differential equations of the linear theory of micropolar elasticity formulated in terms of displacements and micro-rotations in the case of a harmonic dependence of the physical fields on time. The system is known from many previous discussions on the micropolar elasticity. A new analysis aimed at uncoupling the coupled vector differential equation of the linear theory of micropolar elasticity is carried out. A notion of proportionality of the vortex parts of the displacements and microrotations to a single vector, which satisfies the screw equation, is employed. Finally the problem of finding the vortex parts of the displacements and micro-rotations fields is reduced to solution of four uncoupled screw differential equations. Corresponding representation formulae are given. Obtained results can be applied to problems of the linear micropolar elasticity concerning harmonic waves propagation along cylindrical waveguides.


2017 ◽  
Vol 4 (1) ◽  
pp. 104-118 ◽  
Author(s):  
V.V. Zozulya

AbstractNew models for micropolar plane curved rods have been developed. 2-D theory is developed from general 2-D equations of linear micropolar elasticity using a special curvilinear system of coordinates related to the middle line of the rod and special hypothesis based on assumptions that take into account the fact that the rod is thin.High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First stress and strain tensors,vectors of displacements and rotation and body force shave been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby all equations of elasticity including Hooke’s law have been transformed to the corresponding equations for Fourier coefficients. Then in the same way as in the theory of elasticity, system of differential equations in term of displacements and boundary conditions for Fourier coefficients have been obtained. The Timoshenko’s and Euler-Bernoulli theories are based on the classical hypothesis and 2-D equations of linear micropolar elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scale when taking in to account micropolar couple stress and rotation effects.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Victor A. Eremeyev ◽  
Andrzej Skrzat ◽  
Feliks Stachowicz

Within the linear micropolar elasticity we discuss the development of new finite element and its implementation in commercial software. Here we implement the developed 8-node hybrid isoparametric element into ABAQUS and perform solutions of contact problems. We consider the contact of polymeric stamp modelled within the micropolar elasticity with an elastic substrate. The peculiarities of modelling of contact problems with a user defined finite element in ABAQUS are discussed. The provided comparison of solutions obtained within the micropolar and classical elasticity shows the influence of micropolar properties on stress concentration in the vicinity of contact area.


Author(s):  
Richard A. Regueiro

Following atomistic-continuum coupling methods for lattice-structured materials [1, 2], a method for coupling particle to continuum regions of particulate materials is presented. The particle region is modeled using particle mechanics and the discrete element method, whereas the continuum region is modeled using linear micropolar elasticity and the finite element method. The formulation for coupling particle and continuum degrees of freedom as well as partitioning kinetic and potential energies in the overlapping domain is presented. Details of the numerical implementation and numerical examples will follow in a forthcoming paper. The method is developed to model particulate materials at their physical length scale (particle size) in regions of large relative particle motion in a computationally tractable manner.


Sign in / Sign up

Export Citation Format

Share Document