saddle point matrix
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 4)

H-INDEX

3
(FIVE YEARS 1)

Author(s):  
Jennifer Scott ◽  
Miroslav Tůma

AbstractNull-space methods have long been used to solve large sparse n × n symmetric saddle point systems of equations in which the (2, 2) block is zero. This paper focuses on the case where the (1, 1) block is ill conditioned or rank deficient and the k × k (2, 2) block is non zero and small (k ≪ n). Additionally, the (2, 1) block may be rank deficient. Such systems arise in a range of practical applications. A novel null-space approach is proposed that transforms the system matrix into a nicer symmetric saddle point matrix of order n that has a non zero (2, 2) block of order at most 2k and, importantly, the (1, 1) block is symmetric positive definite. Success of any null-space approach depends on constructing a suitable null-space basis. We propose methods for wide matrices having far fewer rows than columns with the aim of balancing stability of the transformed saddle point matrix with preserving sparsity in the (1, 1) block. Linear least squares problems that contain a small number of dense rows are an important motivation and are used to illustrate our ideas and to explore their potential for solving large-scale systems.


2020 ◽  
Vol 36 (36) ◽  
pp. 773-798
Author(s):  
Fabio Durastante ◽  
Isabella Furci

The main focus of this paper is the characterization and exploitation of the asymptotic spectrum of the saddle--point matrix sequences arising from the discretization of optimization problems constrained by elliptic partial differential equations. They uncover the existence of an hidden structure in these matrix sequences, namely, they show that these are indeed an example of Generalized Locally Toeplitz (GLT) sequences. They show that this enables a sharper characterization of the spectral properties of such sequences than the one that is available by using only the fact that they deal with saddle--point matrices. Finally, they exploit it to propose an optimal preconditioner strategy for the GMRES, and Flexible--GMRES methods.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Shuanghua Luo ◽  
Angang Cui ◽  
Cheng-yi Zhang

Abstract The paper studies two splitting forms of generalized saddle point matrix to derive two alternate direction iterative schemes for generalized saddle point systems. Some convergence results are established for these two alternate direction iterative methods. Meanwhile, a numerical example is given to show that the proposed alternate direction iterative methods are much more effective and efficient than the existing one.


2019 ◽  
Vol 878 ◽  
pp. 544-597 ◽  
Author(s):  
Andrew M. Fiore ◽  
James W. Swan

We present a new method for large scale dynamic simulation of colloidal particles with hydrodynamic interactions and Brownian forces, which we call fast Stokesian dynamics (FSD). The approach for modelling the hydrodynamic interactions between particles is based on the Stokesian dynamics (SD) algorithm (J. Fluid Mech., vol. 448, 2001, pp. 115–146), which decomposes the interactions into near-field (short-ranged, pairwise additive and diverging) and far-field (long-ranged many-body) contributions. In FSD, the standard system of linear equations for SD is reformulated using a single saddle point matrix. We show that this reformulation is generalizable to a host of particular simulation methods enabling the self-consistent inclusion of a wide range of constraints, geometries and physics in the SD simulation scheme. Importantly for fast, large scale simulations, we show that the saddle point equation is solved very efficiently by iterative methods for which novel preconditioners are derived. In contrast to existing approaches to accelerating SD algorithms, the FSD algorithm avoids explicit inversion of ill-conditioned hydrodynamic operators without adequate preconditioning, which drastically reduces computation time. Furthermore, the FSD formulation is combined with advanced sampling techniques in order to rapidly generate the stochastic forces required for Brownian motion. Specifically, we adopt the standard approach of decomposing the stochastic forces into near-field and far-field parts. The near-field Brownian force is readily computed using an iterative Krylov subspace method, for which a novel preconditioner is developed, while the far-field Brownian force is efficiently computed by linearly transforming those forces into a fluctuating velocity field, computed easily using the positively split Ewald approach (J. Chem. Phys., vol. 146, 2017, 124116). The resultant effect of this field on the particle motion is determined through solution of a system of linear equations using the same saddle point matrix used for deterministic calculations. Thus, this calculation is also very efficient. Additionally, application of the saddle point formulation to develop high-resolution hydrodynamic models from constrained collections of particles (similar to the immersed boundary method) is demonstrated and the convergence of such models is discussed in detail. Finally, an optimized graphics processing unit implementation of FSD for mono-disperse spherical particles is used to demonstrated performance and accuracy of dynamic simulations of $O(10^{5})$ particles, and an open source plugin for the HOOMD-blue suite of molecular dynamics software is included in the supplementary material.


Author(s):  
Yuri A. Kuznetsov

Abstract In this paper, we propose and investigate a new homogenization method for diffusion problems in domains with multiple inclusions with large values of diffusion coefficients. The diffusion problem is approximated by the P1-finite element method on a triangular mesh. The underlying algebraic problem is replaced by a special system with a saddle point matrix. For the solution of the saddle point system we use the typical asymptotic expansion. We prove the error estimates and convergence of the expanded solutions. Numerical results confirm the theoretical conclusions.


2017 ◽  
Vol 7 (1) ◽  
pp. 211-226
Author(s):  
Yan Dou ◽  
Ai-Li Yang ◽  
Yu-Jiang Wu

AbstractBased on a preconditioned shift-splitting of the (1,1)-block of non-Hermitian saddle-point matrix and the Uzawa iteration method, we establish a new Uzawa-type iteration method. The convergence properties of this iteration method are analyzed. In addition, based on this iteration method, a preconditioner is proposed. The spectral properties of the preconditioned saddle-point matrix are also analyzed. Numerical results are presented to verify the robustness and the efficiency of the new iteration method and the preconditioner.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Qingbing Liu

We investigate the solution of large linear systems of saddle point type with singular (1,1) block by preconditioned iterative methods and consider two parameterized block triangular preconditioners used with Krylov subspace methods which have the attractive property of improved eigenvalue clustering with increased ill-conditioning of the (1,1) block of the saddle point matrix, including the choice of the parameter. Meanwhile, we analyze the spectral characteristics of two preconditioners and give the optimal parameter in practice. Numerical experiments that validate the analysis are presented.


Sign in / Sign up

Export Citation Format

Share Document