Fast Stokesian dynamics

2019 ◽  
Vol 878 ◽  
pp. 544-597 ◽  
Author(s):  
Andrew M. Fiore ◽  
James W. Swan

We present a new method for large scale dynamic simulation of colloidal particles with hydrodynamic interactions and Brownian forces, which we call fast Stokesian dynamics (FSD). The approach for modelling the hydrodynamic interactions between particles is based on the Stokesian dynamics (SD) algorithm (J. Fluid Mech., vol. 448, 2001, pp. 115–146), which decomposes the interactions into near-field (short-ranged, pairwise additive and diverging) and far-field (long-ranged many-body) contributions. In FSD, the standard system of linear equations for SD is reformulated using a single saddle point matrix. We show that this reformulation is generalizable to a host of particular simulation methods enabling the self-consistent inclusion of a wide range of constraints, geometries and physics in the SD simulation scheme. Importantly for fast, large scale simulations, we show that the saddle point equation is solved very efficiently by iterative methods for which novel preconditioners are derived. In contrast to existing approaches to accelerating SD algorithms, the FSD algorithm avoids explicit inversion of ill-conditioned hydrodynamic operators without adequate preconditioning, which drastically reduces computation time. Furthermore, the FSD formulation is combined with advanced sampling techniques in order to rapidly generate the stochastic forces required for Brownian motion. Specifically, we adopt the standard approach of decomposing the stochastic forces into near-field and far-field parts. The near-field Brownian force is readily computed using an iterative Krylov subspace method, for which a novel preconditioner is developed, while the far-field Brownian force is efficiently computed by linearly transforming those forces into a fluctuating velocity field, computed easily using the positively split Ewald approach (J. Chem. Phys., vol. 146, 2017, 124116). The resultant effect of this field on the particle motion is determined through solution of a system of linear equations using the same saddle point matrix used for deterministic calculations. Thus, this calculation is also very efficient. Additionally, application of the saddle point formulation to develop high-resolution hydrodynamic models from constrained collections of particles (similar to the immersed boundary method) is demonstrated and the convergence of such models is discussed in detail. Finally, an optimized graphics processing unit implementation of FSD for mono-disperse spherical particles is used to demonstrated performance and accuracy of dynamic simulations of $O(10^{5})$ particles, and an open source plugin for the HOOMD-blue suite of molecular dynamics software is included in the supplementary material.

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7199
Author(s):  
Woobin Kim ◽  
Hyeong-Rae Im ◽  
Yeong-Hoon Noh ◽  
Ic-Pyo Hong ◽  
Hyun-Sung Tae ◽  
...  

Near-field to far-field transformation (NFFFT) is a frequently-used method in antenna and radar cross section (RCS) measurements for various applications. For weapon systems, most measurements are captured in the near-field area in an anechoic chamber, considering the security requirements for the design process and high spatial costs of far-field measurements. As the theoretical RCS value is the power ratio of the scattered wave to the incident wave in the far-field region, a scattered wave measured in the near-field region needs to be converted into field values in the far-field region. Therefore, this paper proposes a near-field to far-field transformation algorithm based on spherical wave expansion for application in near-field RCS measurement systems. If the distance and angular coordinates of each measurement point are known, the spherical wave functions in an orthogonal relationship can be calculated. If each weight is assumed to be unknown, a system of linear equations as numerous as the number of samples measured in the near electric field can be generated. In this system of linear equations, each weight value can be calculated using the iterative least squares QR-factorization method. Based on this theory, the validity of the proposed NFFFT is verified for several scatterer types, frequencies and measurement distances.


2013 ◽  
Vol 21 (04) ◽  
pp. 1350017
Author(s):  
RAMIN KAVIANI ◽  
VAHID ESFAHANIAN ◽  
MOHAMMAD EBRAHIMI

The affordable grid resolutions in conventional large-eddy simulations (LESs) of high Reynolds jet flows are unable to capture the sound generated by fluid motions near and beyond the grid cut-off scale. As a result, the frequency spectrum of the extrapolated sound field is artificially truncated at high frequencies. In this paper, a new method is proposed to account for the high frequency noise sources beyond the resolution of a compressible flow simulation. The large-scale turbulent structures as dominant radiators of sound are captured in LES, satisfying filtered Navier–Stokes equations, while for small-scale turbulence, a Kolmogorov's turbulence spectrum is imposed. The latter is performed via a wavelet-based extrapolation to add randomly generated small-scale noise sources to the LES near-field data. Further, the vorticity and instability waves are filtered out via a passive wavelet-based masking and the whole spectrum of filtered data are captured on a Ffowcs-Williams/Hawkings (FW-H) surface surrounding the near-field region and are projected to acoustic far-field. The algorithm can be implemented as a separate postprocessing stage and it is observed that the computational time is considerably reduced utilizing a hybrid of many-core and multi-core framework, i.e. MPI-CUDA programming. The comparison of the results obtained from this procedure and those from experiments for high subsonic and transonic jets, shows that the far-field noise spectrum agree well up to 2 times of the grid cut-off frequency.


Author(s):  
Bartosz Bandrowski ◽  
Anna Karczewska ◽  
Piotr Rozmej

Numerical solutions to integral equations equivalent to differential equations with fractional timeThis paper presents an approximate method of solving the fractional (in the time variable) equation which describes the processes lying between heat and wave behavior. The approximation consists in the application of a finite subspace of an infinite basis in the time variable (Galerkin method) and discretization in space variables. In the final step, a large-scale system of linear equations with a non-symmetric matrix is solved with the use of the iterative GMRES method.


2012 ◽  
Vol 1 (33) ◽  
pp. 71 ◽  
Author(s):  
Vasiliki Stratigaki ◽  
Peter Troch ◽  
Timothy Stallard ◽  
Jens Peter Kofoed ◽  
Michel Benoit ◽  
...  

The shrinking reserves of fossil fuels in combination with the increasing energy demand have enhanced the interest in renewable energy sources, including wave energy. In order to extract a considerable amount of wave power, large numbers of Wave Energy Converters will have to be arranged in arrays or farms using a particular geometrical layout. The operational behaviour of a single device may have a positive or negative effect on the power absorption of the neighbouring WECs in the farm (near-field effects). Moreover, as a result of the interaction between the WECs within a farm, the overall power absorption and the wave climate in the lee of the WECs is modified, which may influence neighbouring farms, other users in the sea or even the coastline (far-field effects). Several numerical studies on large WEC arrays have already been performed, but large scale experimental studies on near-field and far-field wake effects of large WEC arrays are not available in literature. Within the HYDRALAB IV European programme, the research project WECwakes has been introduced to perform large scale experiments in the Shallow Water Wave Basin of DHI, in Denmark, on large arrays of point absorbers for different layout configurations and inter-WEC spacings. The aim is to validate and further develop the applied numerical methods, as well as to optimize the geometrical layout of WEC arrays for real applications.


1994 ◽  
Vol 50 (1) ◽  
pp. 167-176 ◽  
Author(s):  
Peter E. Kloeden ◽  
Dong-Jin Yuan

Sufficient conditions involving uniform multisplittings are established for the convergence of relaxed and AOR versions of asynchronous or chaotic parallel iterative methods for solving a large scale nonsingular system of linear equations Ax = b.


Author(s):  
Panpan Meng ◽  
Chengliang Tian ◽  
Xiangguo Cheng

AbstractSolving large-scale modular system of linear equations ($\mathcal {LMSLE}$ℒℳSℒE) is pervasive in modern computer and communication community, especially in the fields of coding theory and cryptography. However, it is computationally overloaded for lightweight devices arisen in quantity with the dawn of the things of internet (IoT) era. As an important form of cloud computing services, secure computation outsourcing has become a popular topic. In this paper, we design an efficient outsourcing scheme that enables the resource-constrained client to find a solution of the $\mathcal {LMSLE}$ℒℳSℒE with the assistance of a public cloud server. By utilizing affine transformation based on sparse unimodular matrices, our scheme has three merits compared with previous work: 1) Our scheme is efficiency/security-adjustable. Our encryption method is dynamic, and it can balance the security and efficiency to match different application scenarios by skillfully control the number of unimodular matrices. 2) Our scheme is versatile. It is suit for generic m-by-n coefficient matrix A, no matter it is square or not. 3) Our scheme satisfies public verifiability and achieves the optimal verification probability. It enables any verifier which is not necessarily the client to verify the correctness of the results returned from the cloud server with probability 1. Finally, theoretical analysis and comprehensive experimental results confirm our scheme’s security and high efficiency.


A general method is developed to predict the effective conductivity of an infinite, statistically homogeneous suspension of particles in an arbitrary (ordered or disordered) configuration. The method follows closely that of ‘stokesian dynamics’, and captures both far-field and near-field particle interactions accurately with no convergence difficulties. This is accomplished by forming a capacitance matrix, the electrostatic analogue of the low-Reynolds-number resistance matrix, which relates the monopole (charge), dipole and quadrupole of the particles to the potential held of the system. A far-field approximation to the capacitance matrix is formed via a moment expansion of the integral equation for the potential. The capacitance matrix of the infinite system is limited to finite number of equations by using periodic boundary conditions, and the Ewald method is used to form rapidly converging lattice sums of particle interactions. To include near-field effects, exact two-body interactions are added to the far-field approximation of the capacitance matrix. The particle dipoles are then calculated directly to determine the effective conductivity of the system. The Madelung constant of cohesive energy of ionic crystals is calculated for simple and body-centred cubic lattices as a check on the method formulation. The results are found to be in excellent agreement with the accepted values. Also, the effective conductivities of spherical particles in cubic arrays are calculated for particle to matrix conductivity ratios of infinity, 10 and 0.01.


1998 ◽  
Vol 06 (03) ◽  
pp. 307-320 ◽  
Author(s):  
R. R. Mankbadi ◽  
S. H. Shih ◽  
D. R. Hixon ◽  
J. T. Stuart ◽  
L. A. Povinelli

While large-scale simulation of jet noise is the most thorough technique currently available for jet noise prediction, three-dimensional direct computation of both the near and far field requires prohibitive computational capability. In this work we propose to limit large-scale simulation to the near field to provide the pressure distribution over a cylindrical surface surrounding the jet. A surface-integral formulation is presented herein in which the calculated pressure on the cylindrical surface is used to obtain the far-field sound, without the need for the normal derivative of the pressure. The results are compared to that of direct large-scale simulation and to the zonal approach in which linearized Euler equations are used as an extension tool.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7298
Author(s):  
Linsen Huang ◽  
Shaoyu Song ◽  
Zhongming Xu ◽  
Zhifei Zhang ◽  
Yansong He

The acoustic imaging (AI) technique could map the position and the strength of the sound source via the signal processing of the microphone array. Conventional methods, including far-field beamforming (BF) and near-field acoustic holography (NAH), are limited to the frequency range of measured objects. A method called Bregman iteration based acoustic imaging (BI-AI) is proposed to enhance the performance of the two-dimensional acoustic imaging in the far-field and near-field measurements. For the large-scale ℓ1 norm problem, Bregman iteration (BI) acquires the sparse solution; the fast iterative shrinkage-thresholding algorithm (FISTA) solves each sub-problem. The interpolating wavelet method extracts the information about sources and refines the computational grid to underpin BI-AI in the low-frequency range. The capabilities of the proposed method were validated by the comparison between some tried-and-tested methods processing simulated and experimental data. The results showed that BI-AI separates the coherent sources well in the low-frequency range compared with wideband acoustical holography (WBH); BI-AI estimates better strength and reduces the width of main lobe compared with ℓ1 generalized inverse beamforming (ℓ1-GIB).


Author(s):  
Jennifer Scott ◽  
Miroslav Tůma

AbstractNull-space methods have long been used to solve large sparse n × n symmetric saddle point systems of equations in which the (2, 2) block is zero. This paper focuses on the case where the (1, 1) block is ill conditioned or rank deficient and the k × k (2, 2) block is non zero and small (k ≪ n). Additionally, the (2, 1) block may be rank deficient. Such systems arise in a range of practical applications. A novel null-space approach is proposed that transforms the system matrix into a nicer symmetric saddle point matrix of order n that has a non zero (2, 2) block of order at most 2k and, importantly, the (1, 1) block is symmetric positive definite. Success of any null-space approach depends on constructing a suitable null-space basis. We propose methods for wide matrices having far fewer rows than columns with the aim of balancing stability of the transformed saddle point matrix with preserving sparsity in the (1, 1) block. Linear least squares problems that contain a small number of dense rows are an important motivation and are used to illustrate our ideas and to explore their potential for solving large-scale systems.


Sign in / Sign up

Export Citation Format

Share Document