fourier collocation
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lei Zhang ◽  
Rui Yang ◽  
Li Zhang ◽  
Lisha Wang

In this paper, the Crank-Nicolson Fourier spectral method is proposed for solving the space fractional Schrödinger equation with wave operators. The equation is treated with the conserved Crank-Nicolson Fourier Galerkin method and the conserved Crank-Nicolson Fourier collocation method, respectively. In addition, the ability of the constructed numerical method to maintain the conservation of mass and energy is studied in detail. Meanwhile, the convergence with spectral accuracy in space and second-order accuracy in time is verified for both Galerkin and collocation approximations. Finally, the numerical experiments verify the properties of the conservative difference scheme and demonstrate the correctness of theoretical results.


2021 ◽  
Author(s):  
Ilya Mullyadzhanov ◽  
Rustam Mullyadzhanov ◽  
Andrey Gelash

<p>The one-dimensional nonlinear Schrodinger equation (NLSE) serves as a universal model of nonlinear wave propagation appearing in different areas of physics. In particular it describes weakly nonlinear wave trains on the surface of deep water and captures up to certain extent the phenomenon of rogue waves formation. The NLSE can be completely integrated using the inverse scattering transform method that allows transformation of the wave field to the so-called scattering data representing a nonlinear analogue of conventional Fourier harmonics. The scattering data for the NLSE can be calculated by solving an auxiliary linear system with the wave field playing the role of potential – the so-called Zakharov-Shabat problem. Here we present a novel efficient approach for numerical computation of scattering data for spatially periodic nonlinear wave fields governed by focusing version of the NLSE. The developed algorithm is based on Fourier-collocation method and provides one an access to full scattering data, that is main eigenvalue spectrum (eigenvalue bands and gaps) and auxiliary spectrum (specific phase parameters of the nonlinear harmonics) of Zakharov-Shabat problem. We verify the developed algorithm using a simple analytic plane wave solution and then demonstrate its efficiency with various examples of large complex nonlinear wave fields exhibiting intricate structure of bands and gaps. Special attention is paid to the case when the wave field is strongly nonlinear and contains solitons which correspond to narrow gaps in the eigenvalue spectrum, see e.g. [1], when numerical computations may become unstable [2]. Finally we discuss applications of the developed approach for analysis of numerical and experimental nonlinear wave fields data.</p><p>The work was supported by Russian Science Foundation grant No. 20-71-00022.</p><p>[1] A. A. Gelash and D. S. Agafontsev, Physical Review E 98, 042210 (2018).</p><p>[2] A. Gelash and R. Mullyadzhanov, Physical Review E 101, 052206 (2020).</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Hyunjung Choi ◽  
Yanxiang Zhao

<p style='text-indent:20px;'>In this paper, we propose some second-order stabilized semi-implicit methods for solving the Allen-Cahn-Ohta-Kawasaki and the Allen-Cahn-Ohta-Nakazawa equations. In the numerical methods, some nonlocal linear stabilizing terms are introduced and treated implicitly with other linear terms, while other nonlinear and nonlocal terms are treated explicitly. We consider two different forms of such stabilizers and compare the difference regarding the energy stability. The spatial discretization is performed by the Fourier collocation method with FFT-based fast implementations. Numerically, we verify the second order temporal convergence rate of the proposed schemes. In both binary and ternary systems, the coarsening dynamics is visualized as bubble assemblies in hexagonal or square patterns.</p>


Author(s):  
Elliott S. Wise ◽  
Jiri Jaros ◽  
Ben T. Cox ◽  
Bradley E. Treeby

Pseudospectral time domain (PSTD) methods are widely used in many branches of acoustics for the numerical solution of the wave equation, including biomedical ultrasound and seismology. The use of the Fourier collocation spectral method in particular has many computational advantages. However, the use of a discrete Fourier basis is also inherently restricted to solving problems with periodic boundary conditions. Here, a family of spectral collocation methods based on the use of a sine or cosine basis is described. These retain the computational advantages of the Fourier collocation method but instead allow homogeneous Dirichlet (sound-soft) and Neumann (sound-hard) boundary conditions to be imposed. The basis function weights are computed numerically using the discrete sine and cosine transforms, which can be implemented using [Formula: see text] operations analogous to the fast Fourier transform. Practical details of how to implement spectral methods using discrete sine and cosine transforms are provided. The technique is then illustrated through the solution of the wave equation in a rectangular domain subject to different combinations of boundary conditions. The extension to boundaries with arbitrary real reflection coefficients or boundaries that are nonreflecting is also demonstrated using the weighted summation of the solutions with Dirichlet and Neumann boundary conditions.


2019 ◽  
Vol 128 ◽  
pp. 261-268
Author(s):  
Yang Yu ◽  
Yurong Zhao ◽  
Benwen Li ◽  
Tieliu Jiang

2019 ◽  
Vol 146 (1) ◽  
pp. 278-288 ◽  
Author(s):  
Elliott S. Wise ◽  
B. T. Cox ◽  
Jiri Jaros ◽  
Bradley E. Treeby

2017 ◽  
Vol 25 (04) ◽  
pp. 1750005 ◽  
Author(s):  
Matej Simurda ◽  
Benny Lassen ◽  
Lars Duggen ◽  
Nils T. Basse

A numerical model for a clamp-on transit-time ultrasonic flowmeter (TTUF) under multi-phase flow conditions is presented. The method solves equations of linear elasticity for isotropic heterogeneous materials with background flow where acoustic media are modeled by setting shear modulus to zero. Spatial derivatives are calculated by a Fourier collocation method allowing the use of the fast Fourier transform (FFT) and time derivatives are approximated by a finite difference (FD) scheme. This approach is sometimes referred to as a pseudospectral time-domain method. Perfectly matched layers (PML) are used to avoid wave-wrapping and staggered grids are implemented to improve stability and efficiency. The method is verified against exact analytical solutions and the effect of the time-staggering and associated lowest number of points per minimum wavelengths value is discussed. The method is then employed to model a complete TTUF measurement setup to simulate the effect of a flow profile on the flowmeter accuracy and a study of an impact of inclusions in flowing media on received signals is carried out.


Sign in / Sign up

Export Citation Format

Share Document