binary and ternary systems
Recently Published Documents


TOTAL DOCUMENTS

290
(FIVE YEARS 31)

H-INDEX

32
(FIVE YEARS 3)

2021 ◽  
Vol 9 ◽  
Author(s):  
Shoubing Ding ◽  
Yue Li ◽  
Yiying Luo ◽  
Zhimin Wu ◽  
Xinqiang Wang

The second nearest-neighbor modified embedded-atom method (2NN MEAM) potential parameters of the Ti–Cr binary and Ti–Cr–N ternary systems are optimized in accordance with the 2NN MEAM method. The novel constructed potential parameters can well reproduce the multiple fundamental physical characteristics of binary and ternary systems and reasonably agree with the first-principles calculation or experimental data. Thus, the newly constructed 2NN MEAM potential parameters can be used for atomic simulations to determine the underlying principle of the hardness enhancement of TiN/CrN multilayered coatings.


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 103
Author(s):  
Maria Valentina Dinu ◽  
Doina Humelnicu ◽  
Maria Marinela Lazar

With the intensive industrial activity worldwide, water pollution by heavy metal ions (HMIs) has become a serious issue that requires strict and careful monitoring, as they are extremely toxic and can cause serious hazards to the environment and human health. Thus, the effective and efficient removal of HMIs still remains a challenge that needs to be solved. In this context, copper(II), cobalt(II) and iron(III) sorption by chitosan (CS)-based composite sponges was systematically investigated in binary and ternary systems. The composites sponges, formed into beads, consisting of ethylenediaminetetraacetic acid (EDTA)- or diethylenetriaminepentaacetic acid (DTPA)-functionalized CS, entrapping a natural zeolite (Z), were prepared through an ice-segregation technique. The HMI sorption performance of these cryogenically structured composite materials was assessed through batch experiments. The HMI sorption capacities of CSZ-EDTA and CSZ-DTPA composite sponges were compared to those of unmodified sorbents. The Fe(III) ions were mainly taken up when they were in two-component mixtures with Co(II) ions at pH 4, whereas Cu(II) ions were preferred when they were in two-component mixtures with Co(II) ions at pH 6. The recycling studies indicated almost unchanged removal efficiency for all CS-based composite sorbents even after the fifth cycle of sorption/desorption, supporting their remarkable chemical stability and recommending them for the treatment of HMI-containing wastewaters.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2793
Author(s):  
Tao Chen ◽  
Xin Hu ◽  
Zhong Chen ◽  
Xiaohong Cui

The synergism/inhibition level, solubilization sites and the total solubility (St) of co-solubilization systems of phenanthrene, anthracene and pyrene in Tween 80 and sodium dodecyl sulfate (SDS) are studied by 1H-NMR, 2D nuclear overhauser effect spectroscopy (NOESY) and rotating frame overhauser effect spectroscopy (ROESY). In Tween 80, inhibition for phenanthrene, anthracene and pyrene is observed in most binary and ternary systems. However, in SDS, synergism is predominant. After analysis, we find that different synergism or inhibition situation between Tween 80 and SDS is related to the different types of surfactants used and the resulting different co-solubilization mechanisms. In addition, we also find that three polycyclic aromatic hydrocarbons.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gholamhossein Sodeifian ◽  
Seyed Ali Sajadian ◽  
Fariba Razmimanesh ◽  
Seyed Mojtaba Hazaveie

AbstractOne of the main steps in choosing the drug nanoparticle production processes by supercritical carbon dioxide (SC-CO2) is determining the solubility of the solid solute. For this purpose, the solubility of Ketoconazole (KTZ) in the SC-CO2, binary system, as well as in the SC-CO2-menthol (cosolvent), ternary system, was measured at 308–338 K and 12–30 MPa using the static analysis method. The KTZ solubility in the SC-CO2 ranged between 0.20 × 10–6 and 8.02 × 10–5, while drug solubility in the SC-CO2 with cosolvent varied from 1.2 × 10–5 to 1.96 × 10–4. This difference indicated the significant effect of menthol cosolvent on KTZ solubility in the SC-CO2. Moreover, KTZ solubilities in the two systems were correlated by several empirical and semiempirical models. Among them, Sodeifian et al., Bian et al., MST, and Bartle et al. models can more accurately correlate experimental data for the binary system than other used models. Also, the Sodeifian and Sajadian model well fitted the solubility data of the ternary system with AARD% = 6.45, Radj = 0.995.


2021 ◽  
Vol 530 ◽  
pp. 112874
Author(s):  
María Dolores Robustillo ◽  
Larissa Castello Branco Almeida Bessa ◽  
Pedro de Alcântara Pessôa Filho

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Hyunjung Choi ◽  
Yanxiang Zhao

<p style='text-indent:20px;'>In this paper, we propose some second-order stabilized semi-implicit methods for solving the Allen-Cahn-Ohta-Kawasaki and the Allen-Cahn-Ohta-Nakazawa equations. In the numerical methods, some nonlocal linear stabilizing terms are introduced and treated implicitly with other linear terms, while other nonlinear and nonlocal terms are treated explicitly. We consider two different forms of such stabilizers and compare the difference regarding the energy stability. The spatial discretization is performed by the Fourier collocation method with FFT-based fast implementations. Numerically, we verify the second order temporal convergence rate of the proposed schemes. In both binary and ternary systems, the coarsening dynamics is visualized as bubble assemblies in hexagonal or square patterns.</p>


Sign in / Sign up

Export Citation Format

Share Document