randomness extraction
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 8)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Giulio Foletto ◽  
Matteo Padovan ◽  
Marco Avesani ◽  
Hamid Tebyanian ◽  
Paolo Villoresi ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Bang-Ying Tang ◽  
Bo Liu ◽  
Yong-Ping Zhai ◽  
Chun-Qing Wu ◽  
Wan-Rong Yu

Abstract State-of-art quantum key distribution (QKD) systems are performed with several GHz pulse rates, meanwhile privacy amplification (PA) with large scale inputs has to be performed to generate the final secure keys with quantified security. In this paper, we propose a fast Fourier transform (FFT) enhanced high-speed and large-scale (HiLS) PA scheme on commercial CPU platform without increasing dedicated computational devices. The long input weak secure key is divided into many blocks and the random seed for constructing Toeplitz matrix is shuffled to multiple sub-sequences respectively, then PA procedures are parallel implemented for all sub-key blocks with correlated sub-sequences, afterwards, the outcomes are merged as the final secure key. When the input scale is 128 Mb, our proposed HiLS PA scheme reaches 71.16 Mbps, 54.08 Mbps and 39.15 Mbps with the compression ratio equals to 0.125, 0.25 and 0.375 respectively, resulting achievable secure key generation rates close to the asymptotic limit. HiLS PA scheme can be applied to 10 GHz QKD systems with even larger input scales and the evaluated throughput is around 32.49 Mbps with the compression ratio equals to 0.125 and the input scale of 1 Gb, which is ten times larger than the previous works for QKD systems. Furthermore, with the limited computational resources, the achieved throughput of HiLS PA scheme is 0.44 Mbps with the compression ratio equals to 0.125, when the input scale equals up to 128 Gb. In theory, the PA of the randomness extraction in quantum random number generation (QRNG) is same as the PA procedure in QKD, and our work can also be efficiently performed in high-speed QRNG.


Author(s):  
Xiaomin Guo ◽  
Ripeng Liu ◽  
Pu Li ◽  
Chen Cheng ◽  
Mingchuan Wu ◽  
...  

Information-theoretically provable unique true random numbers, which cannot be correlated or controlled by an attacker, can be generated based on quantum measurement of vacuum state and universal-hashing randomness extraction. Quantum entropy in the measurements decides the quality and security of the random number generator (RNG). At the same time, it directly determines the extraction ratio of true randomness from the raw data, in other words, it obviously affects quantum random bits generating rate. In this work, we commit to enhancing quantum entropy content in the vacuum noise based quantum RNG. We have taken into account main factors in this proposal to establish the theoretical model of quantum entropy content, including the effects of classical noise, the optimum dynamical analog-digital convertor (ADC) range, the local gain and the electronic gain of the homodyne system. We demonstrate that by amplifying the vacuum quantum noise, abundant quantum entropy is extractable in the step of post-processing even classical noise excursion, which may be deliberately induced by an eavesdropper, is large. Based on the discussion and the fact that the bandwidth of quantum vacuum noise is infinite, we propose large dynamical range and moderate TIA gain to pursue higher local oscillator (LO) amplification of vacuum quadrature and broader detection bandwidth in homodyne system. High true randomness extraction ratio together with high sampling rate is attainable. Experimentally, an extraction ratio of true randomness of 85.3% is achieved by finite enhancement of the laser power of the LO when classical noise excursions of the raw data is obvious.


Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 819 ◽  
Author(s):  
Xiaomin Guo ◽  
Ripeng Liu ◽  
Pu Li ◽  
Chen Cheng ◽  
Mingchuan Wu ◽  
...  

Information-theoretically provable unique true random numbers, which cannot be correlated or controlled by an attacker, can be generated based on quantum measurement of vacuum state and universal-hashing randomness extraction. Quantum entropy in the measurements decides the quality and security of the random number generator (RNG). At the same time, it directly determines the extraction ratio of true randomness from the raw data, in other words, it obviously affects quantum random bits generating rate. In this work, we commit to enhancing quantum entropy content in the vacuum noise based quantum RNG. We have taken into account main factors in this proposal to establish the theoretical model of quantum entropy content, including the effects of classical noise, the optimum dynamical analog-digital convertor (ADC) range, the local gain and the electronic gain of the homodyne system. We demonstrate that by amplifying the vacuum quantum noise, abundant quantum entropy is extractable in the step of post-processing even classical noise excursion, which may be deliberately induced by an eavesdropper, is large. Based on the discussion and the fact that the bandwidth of quantum vacuum noise is infinite, we propose large dynamical range and moderate TIA gain to pursue higher local oscillator (LO) amplification of vacuum quadrature and broader detection bandwidth in homodyne system. High true randomness extraction ratio together with high sampling rate is attainable. Experimentally, an extraction ratio of true randomness of 85.3% is achieved by finite enhancement of the laser power of the LO when classical noise excursions of the raw data is obvious.


Sign in / Sign up

Export Citation Format

Share Document