behavioural response
Recently Published Documents


TOTAL DOCUMENTS

650
(FIVE YEARS 139)

H-INDEX

45
(FIVE YEARS 5)

2022 ◽  
Vol 18 (1) ◽  
pp. e1009672
Author(s):  
Gautam Reddy ◽  
Laura Desban ◽  
Hidenori Tanaka ◽  
Julian Roussel ◽  
Olivier Mirat ◽  
...  

Animals display characteristic behavioural patterns when performing a task, such as the spiraling of a soaring bird or the surge-and-cast of a male moth searching for a female. Identifying such recurring sequences occurring rarely in noisy behavioural data is key to understanding the behavioural response to a distributed stimulus in unrestrained animals. Existing models seek to describe the dynamics of behaviour or segment individual locomotor episodes rather than to identify the rare and transient sequences of locomotor episodes that make up the behavioural response. To fill this gap, we develop a lexical, hierarchical model of behaviour. We designed an unsupervised algorithm called “BASS” to efficiently identify and segment recurring behavioural action sequences transiently occurring in long behavioural recordings. When applied to navigating larval zebrafish, BASS extracts a dictionary of remarkably long, non-Markovian sequences consisting of repeats and mixtures of slow forward and turn bouts. Applied to a novel chemotaxis assay, BASS uncovers chemotactic strategies deployed by zebrafish to avoid aversive cues consisting of sequences of fast large-angle turns and burst swims. In a simulated dataset of soaring gliders climbing thermals, BASS finds the spiraling patterns characteristic of soaring behaviour. In both cases, BASS succeeds in identifying rare action sequences in the behaviour deployed by freely moving animals. BASS can be easily incorporated into the pipelines of existing behavioural analyses across diverse species, and even more broadly used as a generic algorithm for pattern recognition in low-dimensional sequential data.


2021 ◽  
Vol 7 (Supplement) ◽  
Author(s):  
Danielle Arnold ◽  
Kirsten Visscher ◽  
Babette Everaars ◽  
Anita Suijkerbuijk ◽  
Ardine de Wit
Keyword(s):  

2021 ◽  
Vol 15 ◽  
Author(s):  
Ute Korn ◽  
Marina Krylova ◽  
Kilian L. Heck ◽  
Florian B. Häußinger ◽  
Robert S. Stark ◽  
...  

Processing of sensory information is embedded into ongoing neural processes which contribute to brain states. Electroencephalographic microstates are semi-stable short-lived power distributions which have been associated with subsystem activity such as auditory, visual and attention networks. Here we explore changes in electrical brain states in response to an audiovisual perception and memorization task under conditions of auditory distraction. We discovered changes in brain microstates reflecting a weakening of states representing activity of the auditory system and strengthening of salience networks, supporting the idea that salience networks are active after audiovisual encoding and during memorization to protect memories and concentrate on upcoming behavioural response.


2021 ◽  
Author(s):  
◽  
Ross van de Wetering

<p>Rationale. ±3,4-Methylenedioxymethamphetamine (MDMA; ‘ecstasy’) is a popular recreational drug of abuse. Like other drugs of abuse, a proportion of users develop symptoms that are characteristic of a Substance Use Disorder (SUD). The behavioural and neurobiological consequences of repeated misuse of MDMA are not well understood, however.  Objectives. The purpose of the present thesis was to investigate behaviourally relevant neuroadaptations that develop with repeated MDMA exposure in laboratory rats.  Methods. First, the effect of chronic, long-access (6 hour) self-administration of MDMA on the accumulation of the transcription factor, ΔFosB, in the nucleus accumbens (core, shell), dorsal striatum (dorsomedial, dorsolateral, ventromedial, ventrolateral), prefrontal cortex (anterior cingulate, prelimbic, infralimbic, orbitofrontal), amygdala (central, basolateral), ventral tegmental area (anterior, posterior), and raphe (dorsal, median) was measured using immunohistochemistry. Second, the behavioural relevance of these findings was determined by examining the effect of bi-lateral intra-striatal (nucleus accumbens, dorsomedial striatum, dorsolateral striatum) microinjections of MDMA (200 μg/1 μL/side) on the expression of behavioural sensitisation following two days of withdrawal from a regimen of repeated, systemic MDMA exposure (10 mg/kg/day, i.p., for 5 days). Third, a procedure was developed to examine neurochemical correlates of sensitised MDMA-produced behaviour (0, 5, 10 mg/kg, i.p.) following the same regimen of repeated MDMA exposure. Samples were collected from the medial striatum using in vivo microdialysis and the extracellular concentrations of serotonin, dopamine, MDMA, and their metabolites were quantified using liquid chromatography coupled with quadrupole time-of-flight (Q-TOF) mass spectrometry. Lastly, a unique untargeted metabolomics procedure was developed to further analyse these microdialysis samples and to identify novel or unexpected metabolites that were relevant to the sensitised behavioural response produced by MDMA.  Results. MDMA self-administration produced region-dependant increases in ΔFosB. Significant increases in ΔFosB were observed in the nucleus accumbens core, the medial areas of the dorsal striatum, as well as all areas of the prefrontal cortex and amygdala. Small, but significant increases were also observed in the dorsal raphe. Increases were observed in the nucleus accumbens shell and the posterior tail of the ventral tegmental area, but these increases were not significant following statistical correction for multiple comparisons. Acute exposure to MDMA increased locomotor activity only when the drug was infused into the nucleus accumbens. Following repeated systemic exposure, behavioural sensitisation was expressed when MDMA was infused into both the nucleus accumbens or the dorsomedial striatum, but not the dorsolateral striatum. Analysis of microdialysates from the medial striatum indicated that behavioural sensitisation was accompanied by small increases in baseline levels of extracellular serotonin and decreased MDMA-produced increases in serotonin, but these changes were not statistically significant. Behavioural sensitisation was also accompanied by increased extracellular concentrations of dopamine at baseline and following acute MDMA exposure, but these data were not statistically analysed due to small sample sizes. MDMA-produced extracellular concentrations of MDMA did not change with repeated exposure. Untargeted metabolomics revealed potential changes in MDMA and dopamine metabolism that might be relevant to the sensitised behavioural response.  Conclusions. The findings of the current research suggest that repeated MDMA exposure results in many of the same neuroadaptations that result from repeated exposure to other drugs of abuse. These included increased ΔFosB expression in many brain regions that are relevant to addiction, such as the nucleus accumbens, dorsal striatum, and prefrontal cortex. Dopaminergic mechanisms also appeared to be influenced and were associated with sensitised MDMA-produced behaviour. Surprisingly, serotonergic mechanisms were not significantly impacted by repeated MDMA exposure under the current conditions. Some of the procedures developed in this thesis are unique and may be of value for future research investigating the neurochemical underpinnings of addictive behaviour or other disease states.</p>


2021 ◽  
Author(s):  
◽  
Ross van de Wetering

<p>Rationale. ±3,4-Methylenedioxymethamphetamine (MDMA; ‘ecstasy’) is a popular recreational drug of abuse. Like other drugs of abuse, a proportion of users develop symptoms that are characteristic of a Substance Use Disorder (SUD). The behavioural and neurobiological consequences of repeated misuse of MDMA are not well understood, however.  Objectives. The purpose of the present thesis was to investigate behaviourally relevant neuroadaptations that develop with repeated MDMA exposure in laboratory rats.  Methods. First, the effect of chronic, long-access (6 hour) self-administration of MDMA on the accumulation of the transcription factor, ΔFosB, in the nucleus accumbens (core, shell), dorsal striatum (dorsomedial, dorsolateral, ventromedial, ventrolateral), prefrontal cortex (anterior cingulate, prelimbic, infralimbic, orbitofrontal), amygdala (central, basolateral), ventral tegmental area (anterior, posterior), and raphe (dorsal, median) was measured using immunohistochemistry. Second, the behavioural relevance of these findings was determined by examining the effect of bi-lateral intra-striatal (nucleus accumbens, dorsomedial striatum, dorsolateral striatum) microinjections of MDMA (200 μg/1 μL/side) on the expression of behavioural sensitisation following two days of withdrawal from a regimen of repeated, systemic MDMA exposure (10 mg/kg/day, i.p., for 5 days). Third, a procedure was developed to examine neurochemical correlates of sensitised MDMA-produced behaviour (0, 5, 10 mg/kg, i.p.) following the same regimen of repeated MDMA exposure. Samples were collected from the medial striatum using in vivo microdialysis and the extracellular concentrations of serotonin, dopamine, MDMA, and their metabolites were quantified using liquid chromatography coupled with quadrupole time-of-flight (Q-TOF) mass spectrometry. Lastly, a unique untargeted metabolomics procedure was developed to further analyse these microdialysis samples and to identify novel or unexpected metabolites that were relevant to the sensitised behavioural response produced by MDMA.  Results. MDMA self-administration produced region-dependant increases in ΔFosB. Significant increases in ΔFosB were observed in the nucleus accumbens core, the medial areas of the dorsal striatum, as well as all areas of the prefrontal cortex and amygdala. Small, but significant increases were also observed in the dorsal raphe. Increases were observed in the nucleus accumbens shell and the posterior tail of the ventral tegmental area, but these increases were not significant following statistical correction for multiple comparisons. Acute exposure to MDMA increased locomotor activity only when the drug was infused into the nucleus accumbens. Following repeated systemic exposure, behavioural sensitisation was expressed when MDMA was infused into both the nucleus accumbens or the dorsomedial striatum, but not the dorsolateral striatum. Analysis of microdialysates from the medial striatum indicated that behavioural sensitisation was accompanied by small increases in baseline levels of extracellular serotonin and decreased MDMA-produced increases in serotonin, but these changes were not statistically significant. Behavioural sensitisation was also accompanied by increased extracellular concentrations of dopamine at baseline and following acute MDMA exposure, but these data were not statistically analysed due to small sample sizes. MDMA-produced extracellular concentrations of MDMA did not change with repeated exposure. Untargeted metabolomics revealed potential changes in MDMA and dopamine metabolism that might be relevant to the sensitised behavioural response.  Conclusions. The findings of the current research suggest that repeated MDMA exposure results in many of the same neuroadaptations that result from repeated exposure to other drugs of abuse. These included increased ΔFosB expression in many brain regions that are relevant to addiction, such as the nucleus accumbens, dorsal striatum, and prefrontal cortex. Dopaminergic mechanisms also appeared to be influenced and were associated with sensitised MDMA-produced behaviour. Surprisingly, serotonergic mechanisms were not significantly impacted by repeated MDMA exposure under the current conditions. Some of the procedures developed in this thesis are unique and may be of value for future research investigating the neurochemical underpinnings of addictive behaviour or other disease states.</p>


2021 ◽  
Author(s):  
◽  
Shelley M. Davis

<p>Two studies examined the influence visible markers of Traumatic Brain Injury (TBI) have on two mental health models. The two models examined were The Model of Helping Behaviour (Weiner, 1980) and The Danger Appraisal Model (Corrigan, 2000). A total of 305 participants across two experiments were invited and participated in an online survey to investigate the impact visible markers of brain injury have on their emotional and behavioural responses. Participants were recruited via a link on social media or via the intranet at three New Zealand workplaces. The findings of this study found support for visible markers of TBI influencing both The Model of Helping Behaviour and The Danger Appraisal Model. This study suggested that a higher level of perceived dangerousness and social distance is associated with visible markers of TBI and that TBI markers can significantly increase the level of support participants are willing to provide to brain injured individuals within the workplace. Further findings suggested that participants who reported having familiarity of brain injury had lower negative affective reactions, reduced social distance but less willingness to support TBI individuals within the workplace. Due to the limited research relevant to this field, further studies will need to investigate these findings to ascertain whether this is a true replica of the publics’ emotional and behavioural response towards visible markers of brain injury.</p>


2021 ◽  
Author(s):  
◽  
Shelley M. Davis

<p>Two studies examined the influence visible markers of Traumatic Brain Injury (TBI) have on two mental health models. The two models examined were The Model of Helping Behaviour (Weiner, 1980) and The Danger Appraisal Model (Corrigan, 2000). A total of 305 participants across two experiments were invited and participated in an online survey to investigate the impact visible markers of brain injury have on their emotional and behavioural responses. Participants were recruited via a link on social media or via the intranet at three New Zealand workplaces. The findings of this study found support for visible markers of TBI influencing both The Model of Helping Behaviour and The Danger Appraisal Model. This study suggested that a higher level of perceived dangerousness and social distance is associated with visible markers of TBI and that TBI markers can significantly increase the level of support participants are willing to provide to brain injured individuals within the workplace. Further findings suggested that participants who reported having familiarity of brain injury had lower negative affective reactions, reduced social distance but less willingness to support TBI individuals within the workplace. Due to the limited research relevant to this field, further studies will need to investigate these findings to ascertain whether this is a true replica of the publics’ emotional and behavioural response towards visible markers of brain injury.</p>


Sign in / Sign up

Export Citation Format

Share Document