positive label
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 2)

H-INDEX

0
(FIVE YEARS 0)

2021 ◽  
Vol 10 (1) ◽  
pp. 27-34
Author(s):  
Anik Nur Habyba ◽  
Novia Rahmawati ◽  
Triwulandari SD

Improving the affective classroom design is essential to maximize student performance and learning achievement. The comfort and performance achievement of Trisakti University Industrial Engineering students are influenced by the affective design of classrooms. This study aimed to use sentiment analysis in the classification of students’ perceptions of the affective classroom design. Student sentiment classification is done using a Support Vector Machine (SVM). The questionnaire analysis results also showed perceptions about the subjects that were considered the most difficult (statistics). The classrooms had a positive sentiment: FGTSC, a sample for the next stage of classroom design formulation. The results show what impressions and things the students consider in choosing the FGTSC class. Some examples of the dominant kansei word are “comfortable,” this shows that students really care about the comfort of a classroom in the learning process. The word kansei for the design concept was collected from students' perceptions of the “positive” label. Design elements that need to be improved include equipment that is less comfortable to use, less lighting, walls with graffiti and uncomfortable seating. The classification results using three SVM types Kernel linear, radial and polynomial obtained linear have the best accuracy value (76%). These results indicate that the classification of student sentiment has the maximum results with SVM linear kernel (dot) type. This method will be used in classifying student sentiment on the results of improving classroom design.  


2021 ◽  
pp. 1-26
Author(s):  
Isaac Cohen Sabban ◽  
Olivier Lopez ◽  
Yann Mercuzot

Abstract In this paper, we develop a methodology to automatically classify claims using the information contained in text reports (redacted at their opening). From this automatic analysis, the aim is to predict if a claim is expected to be particularly severe or not. The difficulty is the rarity of such extreme claims in the database, and hence the difficulty, for classical prediction techniques like logistic regression to accurately predict the outcome. Since data is unbalanced (too few observations are associated with a positive label), we propose different rebalance algorithm to deal with this issue. We discuss the use of different embedding methodologies used to process text data, and the role of the architectures of the networks.


2014 ◽  
Vol 989-994 ◽  
pp. 1088-1092
Author(s):  
Chen Guang Zhang ◽  
Yan Zhang ◽  
Xia Huan Zhang

In this paper, a novel interactive medical image segmentation method called SMOPL is proposed. This method only needs marking some pixels on foreground region for segmentation. To do this, SMOPL characterize the inherent correlations among foreground and background pixels as Hilbert-Schmidt independence. By maximizing the independence and minimizing the smoothness of labels on instance neighbor graph simultaneously, SMOPL gets the sufficiently smooth confidences of both positive and negative classes in absence of negative training examples. Then a image segmentation can be obtained by assigning each pixel to the label for which the greatest confidence is calculated. Experiments on real-world medical images show that SMOPL is robust to get a high-quality segmentation with only positive label examples.


Sign in / Sign up

Export Citation Format

Share Document