spine navigation
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 4)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Aria M Jamshidi ◽  
Vyacheslav Makler ◽  
Michael Y Wang

Abstract Augmented reality (AR) is a novel technology for spine navigation. This tracking camera-integrated head-mounted display (HMD) represents a novel stereotactic computer navigation modality that has demonstrated excellent precision and accuracy with spinal instrumentation.1 Standard computer-assisted spine navigation systems have two major shortcomings: attention shift and line-of-sight limitations. The HMD allows visualization of the surgical field and navigation data concurrently in the same field of view.2,3 However, the use of AR in spine surgery has been limited to use for instrumentation, not for endoscopy.  Fully endoscopic transforaminal interbody fusion under conscious sedation is an effective treatment option for degenerative spondylolisthesis and spinal stenosis. Although this technique has a steep learning curve, the advantages are vast, including preservation of normal tissue, smaller incisional requirement, and reduced postoperative pain, all enabling rapid recovery after surgery. As with other endoscopic spine surgeries, this procedure has a steep learning curve and requires a robust understanding of foraminal anatomy in order to safely access the disc space.4,5 However, with the introduction of AR, the safety and precision of this procedure could be greatly improved upon.  In this video, we present a case of a 60-yr-old female who presented with a grade 1 spondylolisthesis and severe spinal stenosis and was treated with an L4-L5 interbody fusion. All instrumentation steps and localization for the endoscopic portion of the case were performed with assistance from the AR-HMD system. Informed written consent was obtained from the patient. The participant and any identifiable individuals consented to the publication of his/her image.


2020 ◽  
Author(s):  
Camilo A Molina ◽  
Daniel M Sciubba ◽  
Jacob K Greenberg ◽  
Majid Khan ◽  
Timothy Witham

Abstract BACKGROUND Augmented reality mediated spine surgery is a novel technology for spine navigation. Benchmark cadaveric data have demonstrated high accuracy and precision leading to recent regulatory approval. Absence of respiratory motion in cadaveric studies may positively bias precision and accuracy results and analogous investigations are prudent in live clinical scenarios. OBJECTIVE To report a technical note, accuracy, precision analysis of the first in-human deployment of this technology. METHODS A 78-yr-old female underwent an L4-S1 decompression, pedicle screw, and rod fixation for degenerative spine disease. Six pedicle screws were inserted via AR-HMD (xvision; Augmedics, Chicago, Illinois) navigation. Intraoperative computed tomography was used for navigation registration as well as implant accuracy and precision assessment. Clinical accuracy was graded per the Gertzbein-Robbins (GS) scale by an independent neuroradiologist. Technical precision was analyzed by comparing 3-dimensional (3D) (x, y, z) virtual implant vs real implant position coordinates and reported as linear (mm) and angular (°) deviation. Present data were compared to benchmark cadaveric data. RESULTS Clinical accuracy (per the GS grading scale) was 100%. Technical precision analysis yielded a mean linear deviation of 2.07 mm (95% CI: 1.62-2.52 mm) and angular deviation of 2.41° (95% CI: 1.57-3.25°). In comparison to prior cadaveric data (99.1%, 2.03 ± 0.99 mm, 1.41 ± 0.61°; GS accuracy 3D linear and angular deviation, respectively), the present results were not significantly different (P > .05). CONCLUSION The first in human deployment of the single Food and Drug Administration approved AR-HMD stereotactic spine navigation platform demonstrated clinical accuracy and technical precision of inserted hardware comparable to previously acquired cadaveric studies.


2019 ◽  
Vol 19 (9) ◽  
pp. S59
Author(s):  
Antonio T. Brecevich ◽  
Christina Dowe ◽  
Darren R. Lebl ◽  
Andrew A. Sama ◽  
Celeste Abjornson ◽  
...  

2015 ◽  
Vol 5 (1_suppl) ◽  
pp. s-0035-1554304-s-0035-1554304
Author(s):  
Danny Mendelsohn ◽  
Jason Strelzow ◽  
Juliet Batke ◽  
Marcel Dvorak ◽  
Charles Fisher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document