start transition
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 120 (3) ◽  
pp. 140a
Author(s):  
Pooja Goswami ◽  
Savanna Dorsey ◽  
Carleton Coffin ◽  
Ghada Ghazal ◽  
Yogitha Thattikota ◽  
...  

2020 ◽  
Vol 219 (9) ◽  
Author(s):  
Labe Black ◽  
Sylvain Tollis ◽  
Guo Fu ◽  
Jean-Bernard Fiche ◽  
Savanna Dorsey ◽  
...  

In budding yeast, the transcription factors SBF and MBF activate a large program of gene expression in late G1 phase that underlies commitment to cell division, termed Start. SBF/MBF are limiting with respect to target promoters in small G1 phase cells and accumulate as cells grow, raising the questions of how SBF/MBF are dynamically distributed across the G1/S regulon and how this impacts the Start transition. Super-resolution Photo-Activatable Localization Microscopy (PALM) mapping of the static positions of SBF/MBF subunits in fixed cells revealed each transcription factor was organized into discrete clusters containing approximately eight copies regardless of cell size and that the total number of clusters increased as cells grew through G1 phase. Stochastic modeling using reasonable biophysical parameters recapitulated growth-dependent SBF/MBF clustering and predicted TF dynamics that were confirmed in live cell PALM experiments. This spatio-temporal organization of SBF/MBF may help coordinate activation of G1/S regulon and the Start transition.


Open Biology ◽  
2011 ◽  
Vol 1 (3) ◽  
pp. 110009 ◽  
Author(s):  
Tongli Zhang ◽  
Bernhard Schmierer ◽  
Béla Novák

The start-transition (START) in the G1 phase marks the point in the cell cycle at which a yeast cell initiates a new round of cell division. Once made, this decision is irreversible and the cell is committed to progressing through the entire cell cycle, irrespective of arrest signals such as pheromone. How commitment emerges from the underlying molecular interaction network is poorly understood. Here, we perform a dynamical systems analysis of an established cell cycle model, which has never been analysed from a commitment perspective. We show that the irreversibility of the START transition and subsequent commitment can be consistently explained in terms of the interplay of multiple bistable molecular switches. By applying an existing mathematical model to a novel problem and by expanding the model in a self-consistent manner, we achieve several goals: we bring together a large number of experimental findings into a coherent theoretical framework; we increase the scope and the applicability of the original model; we give a systems level explanation of how the START transition and the cell cycle commitment arise from the dynamical features of the underlying molecular interaction network; and we make clear, experimentally testable predictions.


1999 ◽  
Vol 19 (8) ◽  
pp. 5267-5278 ◽  
Author(s):  
Yuen Ho ◽  
Michael Costanzo ◽  
Lynda Moore ◽  
Ryuji Kobayashi ◽  
Brenda J. Andrews

ABSTRACT In Saccharomyces cerevisiae, gene expression in the late G1 phase is activated by two transcription factors, SBF and MBF. SBF contains the Swi4 and Swi6 proteins and activates the transcription of G1 cyclin genes, cell wall biosynthesis genes, and the HO gene. MBF is composed of Mbp1 and Swi6 and activates the transcription of genes required for DNA synthesis. Mbp1 and Swi4 are the DNA binding subunits for MBF and SBF, while the common subunit, Swi6, is presumed to play a regulatory role in both complexes. We show that Stb1, a protein first identified in a two-hybrid screen with the transcriptional repressor Sin3, binds Swi6 in vitro. The STB1 transcript was cell cycle periodic and peaked in late G1 phase. In vivo accumulation of Stb1 phosphoforms was dependent on CLN1, CLN2, andCLN3, which encode G1-specific cyclins for the cyclin-dependent kinase Cdc28, and Stb1 was phosphorylated by Cln-Cdc28 kinases in vitro. Deletion of STB1 caused an exacerbated delay in G1 progression and the onset of Start transcription in a cln3Δ strain. Our results suggest a role for STB1 in controlling the timing of Start transcription that is revealed in the absence of the G1regulator CLN3, and they implicate Stb1 as an in vivo target of G1-specific cyclin-dependent kinases.


Sign in / Sign up

Export Citation Format

Share Document