lighthill equation
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Author(s):  
Daiki Terakado ◽  
Taku Nonomura ◽  
Makoto Sato ◽  
Kozo Fujii

We investigate the relation between vortical structures and sound source in isotropic compressible turbulence by direct numerical simulations with various turbulent Mach numbers. The sound source is obtained numerically from the Lighthill equation. As a first step, we study the sound source from the Reynolds stress, which is the dominant source in flows at low Mach numbers. We investigate, especially, sound source structures around the “coherent fine scale eddies” [1–4] to lead a universal conclusion of sound generation mechanism from the fine scale structures in supersonic flows. We find that the sound source structures around the coherent fine scale eddies show some distorted structures only in high Mach number flows because shocklets appear around the fine scale eddies in those flows. This change in sound source structures around the coherent fine scale eddies does not appear in low and moderate Mach number cases.


2010 ◽  
Vol 647 ◽  
pp. 473-489 ◽  
Author(s):  
LUTZ LESSHAFFT ◽  
PATRICK HUERRE ◽  
PIERRE SAGAUT

The acoustic field generated by the synchronized vortex street in self-excited hot subsonic jets is investigated via direct numerical simulation of the compressible equations of motion in an axisymmetric geometry. The simulation simultaneously resolves both the aerodynamic near field and the acoustic far field. Self-sustained near-field oscillations in the present flow configurations have been described as nonlinear global modes in an earlier study. The associated acoustic far field is found to be that of a compact dipole, emanating from the location of vortex roll-up. A far-field solution of the axisymmetric Lighthill equation is derived, on the basis of the source term formulation of Lilley (AGARD-CP, vol. 131, 1974, pp. 13.1–13.12). With the near-field source distributions obtained from the direct numerical simulations, the Lighthill solution is in good agreement with the far-field simulation results. Fluctuations of the enthalpy flux within the jet are identified as the dominant aeroacoustic source. Superdirective effects are found to be negligible.


Sign in / Sign up

Export Citation Format

Share Document