mcmc convergence
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Sean M Harrington ◽  
Van Wishingrad ◽  
Robert C Thomson

Abstract Nearly all current Bayesian phylogenetic applications rely on Markov chain Monte Carlo (MCMC) methods to approximate the posterior distribution for trees and other parameters of the model. These approximations are only reliable if Markov chains adequately converge and sample from the joint posterior distribution. Although several studies of phylogenetic MCMC convergence exist, these have focused on simulated data sets or select empirical examples. Therefore, much that is considered common knowledge about MCMC in empirical systems derives from a relatively small family of analyses under ideal conditions. To address this, we present an overview of commonly applied phylogenetic MCMC diagnostics and an assessment of patterns of these diagnostics across more than 18,000 empirical analyses. Many analyses appeared to perform well and failures in convergence were most likely to be detected using the average standard deviation of split frequencies, a diagnostic that compares topologies among independent chains. Different diagnostics yielded different information about failed convergence, demonstrating that multiple diagnostics must be employed to reliably detect problems. The number of taxa and average branch lengths in analyses have clear impacts on MCMC performance, with more taxa and shorter branches leading to more difficult convergence. We show that the usage of models that include both Γ-distributed among-site rate variation and a proportion of invariable sites is not broadly problematic for MCMC convergence but is also unnecessary. Changes to heating and the usage of model-averaged substitution models can both offer improved convergence in some cases, but neither are a panacea.


2020 ◽  
Vol 7 (1) ◽  
pp. 387-412 ◽  
Author(s):  
Vivekananda Roy

Markov chain Monte Carlo (MCMC) is one of the most useful approaches to scientific computing because of its flexible construction, ease of use, and generality. Indeed, MCMC is indispensable for performing Bayesian analysis. Two critical questions that MCMC practitioners need to address are where to start and when to stop the simulation. Although a great amount of research has gone into establishing convergence criteria and stopping rules with sound theoretical foundation, in practice, MCMC users often decide convergence by applying empirical diagnostic tools. This review article discusses the most widely used MCMC convergence diagnostic tools. Some recently proposed stopping rules with firm theoretical footing are also presented. The convergence diagnostics and stopping rules are illustrated using three detailed examples.


2017 ◽  
Author(s):  
Stanisław Adaszewski ◽  
David Slater ◽  
Lester Melie-Garcia ◽  
Bogdan Draganski ◽  
Piotr Bogorodzki

AbstractWe introduce a new approach to Bayesian pRF model estimation using Markov Chain Monte Carlo (MCMC) sampling for simultaneous estimation of pRF and hemodynamic parameters. To obtain high performance on commonly accessible hardware we present a novel heuristic consisting of interpolation between precomputed responses for predetermined stimuli and a large cross-section of receptive field parameters. We investigate the validity of the proposed approach with respect to MCMC convergence, tuning and biases. We compare different combinations of pRF - Compressive Spatial Summation (CSS), Dumoulin-Wandell (DW) and hemodynamic (5-parameter and 3-parameter Balloon-Windkessel) models within our framework with and without the usage of the new heuristic. We evaluate estimation consistency and log probability across models. We perform as well a comparison of one model with and without lookup table within the RStan framework using its No-U-Turn Sampler. We present accelerated computation of whole-ROI parameters for one subject. Finally, we discuss risks and limitations associated with the usage of the new heuristic as well as the means of resolving them. We found that the new algorithm is a valid sampling approach to joint pRF/hemodynamic parameter estimation and that it exhibits very high performance.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Jing Lin

The recent proliferation of Markov chain Monte Carlo (MCMC) approaches has led to the use of the Bayesian inference in a wide variety of fields. To facilitate MCMC applications, this paper proposes an integrated procedure for Bayesian inference using MCMC methods, from a reliability perspective. The goal is to build a framework for related academic research and engineering applications to implement modern computational-based Bayesian approaches, especially for reliability inferences. The procedure developed here is a continuous improvement process with four stages (Plan, Do, Study, and Action) and 11 steps, including: (1) data preparation; (2) prior inspection and integration; (3) prior selection; (4) model selection; (5) posterior sampling; (6) MCMC convergence diagnostic; (7) Monte Carlo error diagnostic; (8) model improvement; (9) model comparison; (10) inference making; (11) data updating and inference improvement. The paper illustrates the proposed procedure using a case study.


2007 ◽  
Vol 24 (4) ◽  
pp. 581-583 ◽  
Author(s):  
J. A.A. Nylander ◽  
J. C. Wilgenbusch ◽  
D. L. Warren ◽  
D. L. Swofford

Sign in / Sign up

Export Citation Format

Share Document