motor neuron excitability
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 13)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Wenting Qin ◽  
Anjing Zhang ◽  
Mingzhen Yang ◽  
Chan Chen ◽  
Lijun Zhen ◽  
...  

Purpose. This study is aimed at exploring how soleus H-reflex change in poststroke patients with spasticity influenced by body position. Materials and Methods. Twenty-four stroke patients with spastic hemiplegia and twelve age-matched healthy controls were investigated. Maximal Hoffmann-reflex (Hmax) and motor potential (Mmax) were elicited at the popliteal fossa in both prone and standing positions, respectively, and the Hmax/Mmax ratio at each body position was determined. Compare changes in reflex behavior in both spastic and contralateral muscles of stroke survivors in prone and standing positions, and match healthy subjects in the same position. Results. In healthy subjects, Hmax and Hmax/Mmax ratios were significantly decreased in the standing position compared to the prone position (Hmax: p = 0.000 , Hmax/Mmax: p = 0.016 ). However, Hmax/Mmax ratios were increased in standing position on both sides in poststroke patients with spasticity (unaffected side: p = 0.006 , affected side: p = 0.095 ). The Hmax and Hmax/Mmax ratios were significantly more increased on the affected side than unaffected side irrespective of the position. Conclusions. The motor neuron excitability of both sides was not suppressed but instead upregulated in the standing position in subjects with spasticity, which may suggest that there was abnormal regulation of the Ia pathway on both sides.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yoshibumi Bunno ◽  
Toshiaki Suzuki

When a person attempts intended finger movements, unintended finger movement also occur, a phenomenon called “enslaving”. Given that motor imagery (MI) and motor execution (ME) share a common neural foundation, we hypothesized that the enslaving effect on the spinal motor neuron excitability occurs during MI. To investigate this hypothesis, electromyography (EMG) and F-wave analysis were conducted in 11 healthy male volunteers. Initially, the EMG activity of the left abductor digiti minimi (ADM) muscle during isometric opposition pinch movement by the left thumb and index finger at 50% maximal effort was compared with EMG activity during the Rest condition. Next, the F-wave and background EMG recordings were performed under the Rest condition, followed by the MI condition. Specifically, in the Rest condition, subjects maintained relaxation. In the MI condition, they imagined isometric left thenar muscle activity at 50% maximal voluntary contraction (MVC). During ME, ADM muscle activity was confirmed. During the MI condition, both F-wave persistence and the F-wave/M-wave amplitude ratio obtained from the ADM muscle were significantly increased compared with that obtained during the Rest condition. No difference was observed in the background EMG between the Rest and MI conditions. These results suggest that MI of isometric intended finger muscle activity at 50% MVC facilitates spinal motor neuron excitability corresponding to unintended finger muscle. Furthermore, MI may induce similar modulation of spinal motor neuron excitability as actual movement.


2021 ◽  
Author(s):  
Mario Bräcklein ◽  
Jaime Ibáñez ◽  
Deren Yusuf Barsakcioglu ◽  
Jonathan Eden ◽  
Etienne Burdet ◽  
...  

Recent developments in neural interfaces enable the real-time and non-invasive tracking of motor neuron spiking activity. Such novel interfaces provide a promising basis for human motor augmentation by extracting potential high-dimensional control signals directly from the human nervous system. However, it is unclear how flexibly humans can control the activity of individual motor neurones to effectively increase the number of degrees-of-freedom available to coordinate multiple effectors simultaneously. Here, we provided human subjects (N=7) with real-time feedback on the discharge patterns of pairs of motor units (MUs) innervating a single muscle (tibialis anterior) and encouraged them to independently control the MUs by tracking targets in a 2D space. Subjects learned control strategies to achieve the target-tracking task for various combinations of MUs. These strategies rarely corresponded to a volitional control of independent input signals to individual MUs. Conversely, MU activation was consistent with a common input to the MU pair, while individual activation of the MUs in the pair was predominantly achieved by alterations in de-recruitment order that could be explained with history-dependent changes in motor neuron excitability. These results suggest that flexible MU control based on independent synaptic inputs to single MUs is not a simple to learn control strategy.


2021 ◽  
Vol 754 ◽  
pp. 135843
Author(s):  
Yuki Fukumoto ◽  
Marina Todo ◽  
Hiroki Bizen ◽  
Daisuke Kimura ◽  
Toshiaki Suzuki

2020 ◽  
Vol 88 (12) ◽  
pp. 1679-1687
Author(s):  
HEND I. MOHAMED, M.Sc.; MOHAMED H. EL-GENDY, Ph.D. ◽  
SALAH EL-DIN B. AHMED, Ph.D.; AMR ABD-ALLA AZZAM, Ph.D.

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Obaid U. Khurram ◽  
Francesco Negro ◽  
Charles J. Heckman ◽  
Christopher K. Thompson

2020 ◽  
Vol 61 (4) ◽  
pp. 480-484
Author(s):  
Mariana Pereira ◽  
Michael Swash ◽  
Mamede Carvalho

2019 ◽  
Vol 10 (1) ◽  
pp. 13 ◽  
Author(s):  
Vincenzo S. Contento ◽  
Brian H. Dalton ◽  
Geoffrey A. Power

Residual torque enhancement (rTE) is a history-dependent property of muscle, which results in an increase in steady-state isometric torque production following an active lengthening contraction as compared to a purely isometric (ISO) contraction at the same muscle length and level of activation. Once thought to be only an intrinsic property of muscle, recent evidence during voluntary contractions indicates a neuromechanical coupling between motor neuron excitability and the contractile state of the muscle. However, the mechanism by which this occurs has yet to be elucidated. The purpose of this study was to investigate inhibition arising from tendon-mediated feedback (e.g., Golgi tendon organ; GTO) through tendon electrical stimulation (TStim) in the ISO and rTE states during activation-matching and torque-matching tasks. Fourteen male participants (22 ± 2 years) performed 10 activation-matching contractions at 40% of their maximum tibialis anterior electromyography amplitude (5 ISO/5 rTE) and 10 torque-matching contractions at 40% of their maximum dorsiflexion torque (5 ISO/5 rTE). During both tasks, 10 TStim were delivered during the isometric steady state of all contractions, and the resulting tendon-evoked inhibitory reflexes were averaged and analyzed. Reflex amplitude increased by ~23% in the rTE state compared to the ISO state for the activation-matching task, and no differences were detected for the torque-matching task. The current data indicate an important relationship between afferent feedback in the torque-enhanced state and voluntary control of submaximal contractions. The history-dependent properties of muscle is likely to alter motor neuron excitability through modifications in tension- or torque-mediated afferent feedback arising from the tendon.


Sign in / Sign up

Export Citation Format

Share Document