scholarly journals The control and training of single motor units in isometric tasks are constrained by a common synaptic input signal

2021 ◽  
Author(s):  
Mario Bräcklein ◽  
Jaime Ibáñez ◽  
Deren Yusuf Barsakcioglu ◽  
Jonathan Eden ◽  
Etienne Burdet ◽  
...  

Recent developments in neural interfaces enable the real-time and non-invasive tracking of motor neuron spiking activity. Such novel interfaces provide a promising basis for human motor augmentation by extracting potential high-dimensional control signals directly from the human nervous system. However, it is unclear how flexibly humans can control the activity of individual motor neurones to effectively increase the number of degrees-of-freedom available to coordinate multiple effectors simultaneously. Here, we provided human subjects (N=7) with real-time feedback on the discharge patterns of pairs of motor units (MUs) innervating a single muscle (tibialis anterior) and encouraged them to independently control the MUs by tracking targets in a 2D space. Subjects learned control strategies to achieve the target-tracking task for various combinations of MUs. These strategies rarely corresponded to a volitional control of independent input signals to individual MUs. Conversely, MU activation was consistent with a common input to the MU pair, while individual activation of the MUs in the pair was predominantly achieved by alterations in de-recruitment order that could be explained with history-dependent changes in motor neuron excitability. These results suggest that flexible MU control based on independent synaptic inputs to single MUs is not a simple to learn control strategy.

2020 ◽  
Vol 5 (3) ◽  
pp. 1155-1167
Author(s):  
Emmanuel Branlard ◽  
Dylan Giardina ◽  
Cameron S. D. Brown

Abstract. This article presents an application of the Kalman filtering technique to estimate loads on a wind turbine. The approach combines a mechanical model and a set of measurements to estimate signals that are not available in the measurements, such as wind speed, thrust, tower position, and tower loads. The model is severalfold faster than real time and is intended to be run online, for instance, to evaluate real-time fatigue life consumption of a field turbine using a digital twin, perform condition monitoring, or assess loads for dedicated control strategies. The mechanical model is built using a Rayleigh–Ritz approach and a set of joint coordinates. We present a general method and illustrate it using a 2-degrees-of-freedom (DOF) model of a wind turbine and using rotor speed, generator torque, pitch, and tower-top acceleration as measurement signals. The different components of the model are tested individually. The overall method is evaluated by computing the errors in estimated tower-bottom-equivalent moment from a set of simulations. From this preliminary study, it appears that the tower-bottom-equivalent moment is obtained with about 10 % accuracy. The limitation of the model and the required steps forward are discussed.


2001 ◽  
Vol 86 (5) ◽  
pp. 2266-2275 ◽  
Author(s):  
Marc D. Binder ◽  
Randall K. Powers

Synchronized discharge of individual motor units is commonly observed in the muscles of human subjects performing voluntary contractions. The amount of this synchronization is thought to reflect the extent to which motoneurons in the same and related pools share common synaptic input. However, the relationship between the proportion of shared synaptic input and the strength of synchronization has never been measured directly. In this study, we simulated common shared synaptic input to cat spinal motoneurons by driving their discharge with noisy, injected current waveforms. Each motoneuron was stimulated with a number of different injected current waveforms, and a given pair of waveforms were either completely different or else shared a variable percentage of common elements. Cross-correlation histograms were then compiled between the discharge of motoneurons stimulated with noise waveforms with variable degrees of similarity. The strength of synchronization increased with the amount of simulated “common” input in a nonlinear fashion. Moreover, even when motoneurons had >90% of their simulated synaptic inputs in common, only ∼25–45% of their spikes were synchronized. We used a simple neuron model to explore how variations in neuron properties during repetitive discharge may lead to the low levels of synchronization we observed experimentally. We found that small variations in spike threshold and firing rate during repetitive discharge lead to large decreases in synchrony, particularly when neurons have a high degree of common input. Our results may aid in the interpretation of studies of motor unit synchrony in human hand muscles during voluntary contractions.


1994 ◽  
Vol 76 (6) ◽  
pp. 2411-2419 ◽  
Author(s):  
S. J. Garland ◽  
R. M. Enoka ◽  
L. P. Serrano ◽  
G. A. Robinson

The activity of 50 single motor units was recorded in the biceps brachii muscle of human subjects while they performed submaximal isometric elbow flexion contractions that were sustained to induce fatigue. The purposes of this study were to examine the influence of fatigue on motor unit threshold force and to determine the relationship between the threshold force of recruitment and the initial interimpulse interval on the discharge rates of single motor units during a fatiguing contraction. The discharge rate of most motor units that were active from the beginning of the contraction declined during the fatiguing contraction, whereas the discharge rates of most newly recruited units were either constant or increased slightly. The absolute threshold forces of recruitment and derecruitment decreased, and the variability of interimpulse intervals increased after the fatigue task. The change in motor unit discharge rate during the fatigue task was related to the initial rate, but the direction of the change in discharge rate could not be predicted from the threshold force of recruitment or the variability in the interimpulse intervals. The discharge rate of most motor units declined despite an increase in the excitatory drive to the motoneuron pool during the fatigue task.


2005 ◽  
Vol 94 (1) ◽  
pp. 206-218 ◽  
Author(s):  
Jamie A. Johnston ◽  
Sara A. Winges ◽  
Marco Santello

We recently examined the extent to which motor units of digit flexor muscles receive common input during multidigit grasping. This task elicited moderate to strong motor-unit synchrony (common input strength, CIS) across muscles (flexor digitorum profundus, FDP, and flexor pollicis longus, FPL) and across FDP muscle compartments, although the strength of this common input was not uniform across digit pairs. To further characterize the neural mechanisms underlying the control of multidigit grasping, we analyzed the relationship between firing of single motor units from these hand muscles in the frequency domain by computing coherence. We report three primary findings. First, in contrast to what has been reported in intrinsic hand muscles, motor units belonging to different muscles and muscle compartments of extrinsic digit flexors exhibited significant coherence in the 0- to 5- and 5- to 10-Hz frequency ranges and much weaker coherence in the higher 10–20 Hz range (maximum 0.0025 and 0.0008, respectively, pooled across all FDP compartment pairs). Second, the strength and incidence of coherence differed considerably across digit pairs. Third, contrary to what has been reported in the literature, across-muscle coherence can be stronger and more prevalent than within-muscle coherence, as FPL–FDP2 (thumb-index digit pair) exhibited the strongest and most prevalent coherence in our data (0.010 and 43% at 3 Hz, respectively). The heterogeneous organization of common input to these muscles and muscle compartments is discussed in relation to the functional role of individual digit pairs in the coordination of multiple digit forces in grasping.


2004 ◽  
Vol 92 (6) ◽  
pp. 3210-3220 ◽  
Author(s):  
Sara A. Winges ◽  
Marco Santello

The control of whole hand grasping relies on complex coordination of multiple forces. While many studies have characterized the coordination of finger forces and torques, the control of hand muscle activity underlying multi-digit grasping has not been studied to the same extent. Motor-unit synchrony across finger muscles or muscle compartments might be one of the factors underlying the limited individuation of finger forces. Such “unwanted” coupling among finger forces, however, might be desirable when a high level of force coupling is required to prevent object slip during grasping. The goal of this study was to quantify the strength of synchrony between single motor units from extrinsic hand muscles as subjects held a device with a five-digit grasp. During the hold phase, we recorded the normal force exerted by each digit and the electrical activity of single motor units from each of the four divisions of the muscle flexor digitorum profundus (FDP) and one thumb flexor muscle, m. flexor pollicis longus (FPL). The strength of motor-unit synchrony was quantified by the common input strength index (CIS). We found moderate to strong motor-unit synchrony between FPL and the index FDP compartment [CIS: 0.49 ± 0.03 (SE)] and across most FDP compartments (0.34 ± 0.02). Weak synchrony, however, was found between FPL and the middle, ring, and little finger FDP compartments (0.25 ± 0.01). This difference might reflect the larger force contribution of the thumb-index finger pair relative to other thumb-finger combinations in five-digit grasping.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Éric Martineau ◽  
Adriana Di Polo ◽  
Christine Vande Velde ◽  
Richard Robitaille

Despite being an early event in ALS, it remains unclear whether the denervation of neuromuscular junctions (NMJ) is simply the first manifestation of a globally degenerating motor neuron. Using in vivo imaging of single axons and their NMJs over a three-month period, we identify that single motor-units are dismantled asynchronously in SOD1G37R mice. We reveal that weeks prior to complete axonal degeneration, the dismantling of axonal branches is accompanied by contemporaneous new axonal sprouting resulting in synapse formation onto nearby NMJs. Denervation events tend to propagate from the first lost NMJ, consistent with a contribution of neuromuscular factors extrinsic to motor neurons, with distal branches being more susceptible. These results show that NMJ denervation in ALS is a complex and dynamic process of continuous denervation and new innervation rather than a manifestation of sudden global motor neuron degeneration.


Author(s):  
Mario A. Benitez Lopez ◽  
Carlos Rodriguez ◽  
Jonathan Camargo

Abstract Control of prosthetic hands is still an open problem, currently, commercial prostheses use direct myoelectric control for this purpose. However, as mechanical design advances, more dexterous prostheses with more degrees of freedom (DOF) are created, then a more precise control is required. State of the art has focused in the use of pattern recognition as a control strategy with promising results. Studies have shown similar results to classic control strategies with the advantage of being more intuitive for the user. Many works have tried to find the algorithms that best follows the user’s intention. However, deployment of these algorithms for real-time classification in a prosthesis has not been widely explored. This paper addresses this problem by deploying and testing in real-time an Artificial Neural Network (ANN). The ANN was trained to classify three different motions: no grasp, precision grasp and power grasp in order to control a two DOF trans-radial prosthetic hand with electromyographic signals acquired from two channels. Static and dynamic tests were made to evaluate the ANN under those conditions, 95% and 81% accuracy scores were reached respectively. Our work shows the potential of pattern recognition algorithms to be deployed in microcontrollers that can fit inside myoelectric prostheses.


1981 ◽  
Vol 24 (4) ◽  
pp. 567-576 ◽  
Author(s):  
Anne Smith ◽  
Gerald N. Zimmermann ◽  
Paul J. Abbas

Single motor units were recorded with intramuscular electrodes in sites selected to isolate units of the mentalis muscles of two human subjects. Order of recruitment of three groups of motor units was analyzed during repetition of syllables. Within each group motor units showed variable patterns of recruitment over repeated utterances. These recruitment patterns of labial motor units and the patterns observed by Sussman et al. in a jaw opening muscle are used to illustrate issues critical to interpretation of recruitment patterns of motor units active during speech. From extant data, inferences about the size of the motor units active cannot be made; however, the variability of recruitment patterns has significance for hypotheses about the underlying mechanisms of recruitment. Discussion includes the question of the size of motor units as inferred from action potential amplitude, differences in methodology between experiments in speech and those often used to interpret them, and the extent to which it is possible to isolate motor units from a single muscle in electromyography of facial muscles.


1987 ◽  
Vol 62 (1) ◽  
pp. 187-193 ◽  
Author(s):  
T. W. Watson ◽  
W. A. Whitelaw

The order of recruitment of single-motor units in parasternal intercostal muscles during inspiration was studied in normal human subjects during quiet breathing and voluntary hyperventilation. Electromyograms were recorded from the second and third intercostal spaces by means of bipolar fine wire electrodes. Flow at the mouth, volume, end-expired CO2, and rib cage and abdominal anterior-posterior diameters were monitored. Single-motor units were identified using criteria of amplitude and shape, and the time of first appearance of each unit in each inspiration was noted. Hyperventilation was performed with visual feedback of the display of rib cage and abdomen excursions, keeping the ratio of rib cage to abdominal expansion. Subjects were normocapnic in quiet breathing and developed hypocapnia during hyperventilation. Recruitment order was stable in quiet breathing, but in some cases was altered during voluntary hyperventilation. Some low threshold units that fired early in the breath in quiet breathing fired earlier at the beginning of a period of voluntary hyperventilation but progressively later in the breath as hyperventilation went on, whereas later firing units moved progressively toward the early part of inspiration. This suggests that different groups of motoneurons in the pool supplying parasternal intercostal muscles receive different patterns of synaptic input.


Sign in / Sign up

Export Citation Format

Share Document