spinal motor neuron
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 23)

H-INDEX

25
(FIVE YEARS 2)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Ayana Sawai ◽  
Sarah Pfennig ◽  
Milica Bulajić ◽  
Alexander Miller ◽  
Alireza Khodadadi-Jamayran ◽  
...  

Polycomb repressive complexes (PRCs) 1 and 2 maintain stable cellular memories of early fate decisions by establishing heritable patterns of gene repression. PRCs repress transcription through histone modifications and chromatin compaction, but their roles in neuronal subtype diversification are poorly defined. We found that PRC1 is essential for the specification of segmentally-restricted spinal motor neuron (MN) subtypes, while PRC2 activity is dispensable to maintain MN positional identities during terminal differentiation. Mutation of the core PRC1 component Ring1 in mice leads to increased chromatin accessibility and ectopic expression of a broad variety of fates determinants, including Hox transcription factors, while neuronal class-specific features are maintained. Loss of MN subtype identities in Ring1 mutants is due to the suppression of Hox-dependent specification programs by derepressed Hox13 paralogs (Hoxa13, Hoxb13, Hoxc13, Hoxd13). These results indicate that PRC1 can function in the absence of de novo PRC2-dependent histone methylation to maintain chromatin topology and postmitotic neuronal fate.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yoshibumi Bunno ◽  
Toshiaki Suzuki

When a person attempts intended finger movements, unintended finger movement also occur, a phenomenon called “enslaving”. Given that motor imagery (MI) and motor execution (ME) share a common neural foundation, we hypothesized that the enslaving effect on the spinal motor neuron excitability occurs during MI. To investigate this hypothesis, electromyography (EMG) and F-wave analysis were conducted in 11 healthy male volunteers. Initially, the EMG activity of the left abductor digiti minimi (ADM) muscle during isometric opposition pinch movement by the left thumb and index finger at 50% maximal effort was compared with EMG activity during the Rest condition. Next, the F-wave and background EMG recordings were performed under the Rest condition, followed by the MI condition. Specifically, in the Rest condition, subjects maintained relaxation. In the MI condition, they imagined isometric left thenar muscle activity at 50% maximal voluntary contraction (MVC). During ME, ADM muscle activity was confirmed. During the MI condition, both F-wave persistence and the F-wave/M-wave amplitude ratio obtained from the ADM muscle were significantly increased compared with that obtained during the Rest condition. No difference was observed in the background EMG between the Rest and MI conditions. These results suggest that MI of isometric intended finger muscle activity at 50% MVC facilitates spinal motor neuron excitability corresponding to unintended finger muscle. Furthermore, MI may induce similar modulation of spinal motor neuron excitability as actual movement.


mBio ◽  
2021 ◽  
Author(s):  
Meenakshi Bhaskar ◽  
Sriparna Mukherjee ◽  
Anirban Basu

Neurotropic viral infections are an increasingly common cause of immediate or delayed neuropsychiatric sequelae, cognitive impairment, and movement disorders or, in severe cases, death. Given the highest reported disability-adjusted life years and mortality rate worldwide, a better understanding of molecular mechanisms for underlying clinical manifestations like AFP will help in development of more effective tools for therapeutic solutions.


2021 ◽  
Author(s):  
Ee Shan Liau ◽  
Suoqin Jin ◽  
Yen-Chung Chen ◽  
Wei-Szu Liu ◽  
Luok Wen Yong ◽  
...  

AbstractSpinal motor neurons (MNs) integrate sensory stimuli and brain commands to generate motor movements in vertebrates. Distinct MN populations and their diversity has long been hypothesized to co-evolve with motor circuit to provide the neural basis from undulatory to ambulatory locomotion during aquatic-to-terrestrial transition of vertebrates. However, how these subtypes are evolved remains largely enigmatic. Using single-cell transcriptomics, we investigate heterogeneity in mouse MNs and discover novel segment-specific subtypes. Among limb-innervating MNs, we reveal a diverse neuropeptide code for delineating putative motor pool identities. We further uncovered that axial MNs are subdivided by three conserved and molecularly distinct subpopulations, defined by Satb2, Nr2f2 or Bcl11b expression. Although axial MNs are conserved from cephalochordates to humans, subtype diversity becomes prominent in land animals and appears to continue evolving in humans. Overall, our study provides a unified classification system for spinal MNs and paves the way towards deciphering how neuronal subtypes are evolved.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Mariángeles Kovacs ◽  
Catalina Alamón ◽  
Cecilia Maciel ◽  
Valentina Varela ◽  
Sofía Ibarburu ◽  
...  

AbstractDegeneration of motor neurons, glial cell reactivity, and vascular alterations in the CNS are important neuropathological features of amyotrophic lateral sclerosis (ALS). Immune cells trafficking from the blood also infiltrate the affected CNS parenchyma and contribute to neuroinflammation. Mast cells (MCs) are hematopoietic-derived immune cells whose precursors differentiate upon migration into tissues. Upon activation, MCs undergo degranulation with the ability to increase vascular permeability, orchestrate neuroinflammation and modulate the neuroimmune response. However, the prevalence, pathological significance, and pharmacology of MCs in the CNS of ALS patients remain largely unknown. In autopsy ALS spinal cords, we identified for the first time that MCs express c-Kit together with chymase, tryptase, and Cox-2 and display granular or degranulating morphology, as compared with scarce MCs in control cords. In ALS, MCs were mainly found in the niche between spinal motor neuron somas and nearby microvascular elements, and they displayed remarkable pathological abnormalities. Similarly, MCs accumulated in the motor neuron-vascular niche of ALS murine models, in the vicinity of astrocytes and motor neurons expressing the c-Kit ligand stem cell factor (SCF), suggesting an SCF/c-Kit-dependent mechanism of MC differentiation from precursors. Mechanistically, we provide evidence that fully differentiated MCs in cell cultures can be generated from the murine ALS spinal cord tissue, further supporting the presence of c-Kit+ MC precursors. Moreover, intravenous administration of bone marrow-derived c-Kit+ MC precursors infiltrated the spinal cord in ALS mice but not in controls, consistent with aberrant trafficking through a defective microvasculature. Pharmacological inhibition of c-Kit with masitinib in ALS mice reduced the MC number and the influx of MC precursors from the periphery. Our results suggest a previously unknown pathogenic mechanism triggered by MCs in the ALS motor neuron-vascular niche that might be targeted pharmacologically.


2021 ◽  
Author(s):  
Catarina Catela ◽  
Yifei Weng ◽  
Kailong Wen ◽  
Weidong Feng ◽  
Paschalis Kratsios

Spinal motor neurons (MNs) constitute cellular substrates for several movement disorders. Although their early development has received much attention, how spinal MNs become and remain terminally differentiated is poorly understood. Here, we determined the transcriptome of mouse brachial MNs at embryonic and postnatal stages. We found that genes encoding homeodomain (HOX, LIM) transcription factors (TFs), previously implicated in early MN development, continue to be expressed postnatally, suggesting later functions. To test this, we inactivated Hoxc8 at successive stages of MN development. We found that Hoxc8 is not only required to establish but also maintain expression of several MN terminal differentiation markers. Furthermore, we uncovered novel TFs with continuous MN expression, a Hoxc8 dependency for maintained expression of Iroquois (Irx) homeodomain TFs, and a new role for Irx2 in MN development. Our findings dovetail recent observations in C. elegans MNs, pointing toward an evolutionarily conserved role for Hox in neuronal terminal differentiation.


2021 ◽  
Vol 754 ◽  
pp. 135843
Author(s):  
Yuki Fukumoto ◽  
Marina Todo ◽  
Hiroki Bizen ◽  
Daisuke Kimura ◽  
Toshiaki Suzuki

Sign in / Sign up

Export Citation Format

Share Document