borehole camera
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 10)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Yongliang He ◽  
Mingshi Gao ◽  
Dong Xu ◽  
Xin Yu

This paper studies the evolution and control of surrounding rock under different pressure relief support conditions in mine roadways in which rockburst events have occurred. The evolution of fractures in the surrounding rock was determined from borehole images obtained with a digital panoramic borehole camera, and the surface displacement due to the rockburst events in the mine roadway was measured. According to the existing problems of the original support system of the roadway, a new coupled support system to prevent rockburst events in mine roadways was proposed, resolving both the pressure relief and support of the roadway. Field measurements indicate that the effect on the roadway under the coupled method of pressure relief and support was more satisfactory than that under the original support system. With the coupled support method, the surface displacement of the roadway was approximately 0.6 m, fractures were distributed only in the soft structures and bolt anchorage areas, and the maximum depth of the fractures was 2.95 m. By contrast, under the original support system, fractures were distributed throughout the roadway surrounding rock, and the maximum depth of fractures was 6.75 m. This coupled roadway support technology of pressure relief and support effectively maintains the stability of the rock surrounding the roadway and ensures the safety of the working face. The research results can provide a reference for damage prevention and support of mine roadways prone to rockburst events.


2021 ◽  
Vol 11 (2) ◽  
pp. 764
Author(s):  
Ivica Pavičić ◽  
Ivo Galić ◽  
Mišo Kucelj ◽  
Ivan Dragičević

The successful exploration of dimension stone mainly depends on the quality, size, and shape of extractable blocks of dimension stone. The investigated area is in the Pelješac Peninsula (Croatia), in the External Dinarides orogeny, built from thick carbonate succession, characterized by relatively small deposits of high-quality dimension stone. These conditions demand challenging geological investigations in the “pre-quarry” phase to find optimal quarry location. The size and shape of dimension stone blocks are mainly controlled by fracture pattern systems. In the rugged, covered terrains, it is very hard to obtain a satisfactory amount of fracture data from the surface, so it is necessary to collect them from the underground. Borehole camera technology can visualize the inner part of the rock mass and measure the fracture characteristics. The main conclusions are as follows: (1) the digital borehole camera technology provides a quick, effective, and low-cost geological survey of fractured rock mass; (2) statistical fracture distribution parameters, P10, fracture spacing, Volumetric Joint Count (Jv) based on borehole wall survey can reflect the integrity of rock mass, providing a solid decision-making base for further investment plans and dimension stone excavation method.


2020 ◽  
Vol 20 (2) ◽  
pp. 11-17
Author(s):  
A. Ewusi ◽  
J. Seidu

Rehabilitation works were carried out on boreholes in the Dunkwa Mining town in the Central Region of Ghana. These works were carried out because the boreholes had lost their original yields due to clogging, corrosion and encrustation and had been abandoned for a long time. The cost of drilling a new well and assessing the productivity of the well is $4,500 which is more expensive that carrying out rehabilitation works which is cheaper, about $800. Also, the initial yields of the boreholes were very high according to the feasibility report which is not a common characteristic of the rocks in the area. Camera inspection followed by rehabilitation, pre and post pumping tests were carried out to assess whether there has been an improvement in their yield after the exercise and that the yield obtained will be adequate for a water supply design. Results show that all the boreholes had an improvement in their yields (57.19 - 259.80 %) after the rehabilitation. It can therefore be concluded that rehabilitation is effective in restoring boreholes to their original yields. Organisations drilling boreholes to communities can take advantage of rehabilitation of the existing boreholes located in the communities which are high yielding, thereby reducing project implementation cost. Keywords: Borehole Rehabilitation, Borehole Yields, Borehole Camera Inspection, Pumping Test


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Ganggang Niu ◽  
Kai Zhang ◽  
Bosong Yu ◽  
Yanlong Chen ◽  
Yu Wu ◽  
...  

The geological condition is essential for mining design and disaster control in underground coal mines. The present research focuses on the real-time assessment method on rock mass condition during drilling boreholes. In situ comprehensive experiments were carried out using three methods, which are measurement while drilling (MWD) system, vibration measurement while drilling (VMWD) system, and borehole camera detecting system. In the MWD system, the operating parameters of the drilling machine were recorded, and a dimensionless index Id based on the collected parameters was adopted to assess the geological condition along the borehole. The results show that the state of rock mass can be well classified using the MWD system for both the cross-layer and in-seam boreholes. In the VMWD system, the vibration of the drilling bit was monitored, and the signal was analyzed in both time domain and frequency domain. The results indicate that the rock mass condition can be quantitatively evaluated using the mean square value of the signal and qualitatively estimated using the energy of the spectrum. In the borehole camera system, the photos of the rock mass along the borehole could be well captured, and the identified rock mass condition was used to verify the results of the MWD and VMWD systems. Comprehensive compassion between the results from the three systems shows that all the methods can give valuable information for the geological condition, and the outcomes of the different methods are generally comparable. For practical purposes, the advantages of the involved three detecting systems are discussed.


2019 ◽  
Vol 60 (79) ◽  
pp. 193-205 ◽  
Author(s):  
Gregory Church ◽  
Andreas Bauder ◽  
Melchior Grab ◽  
Lasse Rabenstein ◽  
Satyan Singh ◽  
...  

ABSTRACTEnglacial hydrology plays an important role in routing surface water to the glacier's bed and it consequently affects the glacier's dynamics. However, it is often difficult to observe englacial conduit conditions on temperate glaciers because of their short-lived nature. We acquired repeated active surface seismic data over the Rhone Glacier, Switzerland to monitor and characterise englacial conduit conditions. Amplitude-versus-angle analysis suggested that the englacial conduit is water filled and between 0.5 and 4 m thick. A grid of GPR profiles, acquired during the 2018 melt season, showed the englacial conduit network persisting and covering ~ 14,000 m2. In late summer 2018, several boreholes were drilled into the conduit network. We observed generally stable water pressure, but there were also short sudden increases. A borehole camera provided images of a fast flowing englacial stream transporting sediment through the conduit. From these observations, we infer that the englacial conduit network is fed by surface meltwater and morainal streams. The surface and morainal streams merge together, enter the glacier subglacially and flow through subglacial channels along the flank. These subglacial channels flow into highly efficient englacial conduits traversing the up-glacier section of the overdeepening before connecting with the subglacial drainage system.


2019 ◽  
Vol 83 (sp1) ◽  
pp. 609 ◽  
Author(s):  
Zengqiang Han ◽  
Chuanying Wang ◽  
Sheng Hu ◽  
Yiteng Wang

Sign in / Sign up

Export Citation Format

Share Document