scholarly journals Impact of the heterogeneity of the sandy Opalinus clay facies at the Mont Terri underground research laboratory on radionuclide migration

2021 ◽  
Vol 1 ◽  
pp. 141-142
Author(s):  
Naila Ait-Mouheb ◽  
Yuankai Yang ◽  
Luc R. Van Loon ◽  
Martin A. Glaus ◽  
Guido Deissmann ◽  
...  

Abstract. The assessment of the safety of a deep geological repository (DGR) for high-level radioactive wastes over assessment time scales of up to 1 million years requires an in-depth understanding of the multi-scale coupled processes that affect the repository system evolution over time, to reduce uncertainties and conservatism in safety analyses. This is in particular required with respect to the challenges of a comparative assessment of different repository concepts in different host rocks within the process of a site selection for a DGR for heat-generating radioactive wastes in Germany. The collaborative project “Integrity of nuclear waste repository systems – Cross-scale system understanding and analysis (iCross)” conducted jointly by five research centres of the Helmholtz Association and co-funded by the Initiative and Networking Fund of the Helmholtz Association and the Federal Ministry of Education and Research (BMBF) has been initiated with the overall objective to improve the understanding of coupled thermal-hydraulic-mechanical-chemical-(micro)biological (THMCB) processes and to develop simulation tools that enable a holistic close to reality description of the long-term evolution of the repository system. Geological formations, such as those foreseen as potential host rocks for DGRs, and their surroundings are heterogeneous on various length scales ranging from nanometers to kilometers. Therefore, the aim of this work in the context of iCross is to evaluate the effects of mineralogical, geochemical and microstructural heterogeneities of repository host rocks on radionuclide transport in the repository far field, using the sandy facies of the Opalinus clay (SF-OPA) from the Mont Terri underground research laboratory (St. Ursanne, Switzerland) as an example. Here, we address in particular the migration behaviour of Ra-226 as an important radionuclide to be considered in safety cases for deep geological disposal of spent nuclear fuel. To assess the impact of the heterogeneities in SF-OPA on radionuclide transport, a complementary approach combining microstructural characterisation methods, experimental techniques for the determination of transport parameters of the rock matrix and the mobility of Ra-226 with innovative developments in reactive transport modelling on the pore and continuum scales was pursued. One of the results was that although the limited clay content in SF-OPA decreases the total amount of Ra bound to the illite phase, the solid solutions of sulphate and carbonate compensate for this and provide a major fixation mechanism.

2021 ◽  
Vol 1 ◽  
pp. 85-87
Author(s):  
Dirk Bosbach ◽  
Horst Geckeis ◽  
Frank Heberling ◽  
Olaf Kolditz ◽  
Michael Kühn ◽  
...  

Abstract. The interdisciplinary project “Integrity of nuclear waste repository systems – Cross-scale system understanding and analysis (iCROSS)” combines research competencies of Helmholtz scientists related to the topics of nuclear, geosciences, biosciences and environmental simulations in collaborations overarching the research fields energy and earth and environment. The focus is to understand and analyze close-to-real long-term evolutionary pathways of radioactive waste repositories across nanoscales to repository scales. The project is subdivided into work packages dealing with laboratory studies, field experiments in underground research laboratories (URLs), advanced modelling studies and the integration and alignment of data and information using virtual reality methods. In this sense, the project structure aims at a holistic view on relevant processes across scales in order to comprehensively simulate potential repository evolutions. Within the multi-barrier system of a repository for heat-generating radioactive waste, a number of complex reactions proceed, including dissolution, redox processes, biochemical reactions, gas evolution and solid/liquid interface and (co)precipitation reactions. At the same time, thermal and external mechanical stress has an impact on the conditions in a deep geological repository. All those processes are highly coupled, with multiple interdependencies on various scales and have a strong impact on radionuclide mobility and retention. In recent years, substantial progress was achieved in describing coupled thermal-hydro-mechanical-chemical-biological (THM/CB) processes in numerical simulations. A realistic and concise description of these coupled processes on different time and spatial scales is, at present, a largely unresolved scientific and computational challenge. The close interaction of experimental and simulation teams aims at a more accurate quantification and assessment of processes and thus, the reduction of uncertainties and of conservative assumptions and eventually to a close-to-real perception of the repository evolution. One focus of iCROSS is directed to relevant processes in a clay rock repository. In this context, the iCROSS team became a full member of the international Mont Terri consortium and worked in close collaboration with international and German institutions in URL projects. Respective experiments specifically deal with coupled processes at the reactive interfaces in a repository near field (e.g. the steel/bentonite and bentonite/concrete interfaces). Within iCROSS, the impact of secondary phase formation on radionuclide transport is investigated. At Mont Terri, experiments are in preparation to study radionuclide transport phenomena in clay rock formations within temperature gradients and in facies exhibiting significant heterogeneities on different scales (nm to cm). Beside those studies, high resolution exploration methods for rock characterization are developed and tested and the effect of temperature and other boundary conditions on the strength, creep properties and healing of faults within Opalinus clay are quantified. Multiphysics models coupled to reactive transport simulation have been further developed and applied to laboratory and field experiments. Results are digitally analyzed and illustrated in a visualization center, in order to enhance the comprehension of coupled processes in repository systems across scales. The present contribution provides an overview on the project and reports selected results. The impact of considering complex coupled processes in repository subsystems for the assessment of the integrity of a given (generic) repository arrangement is discussed.


2004 ◽  
Vol 92 (9-11) ◽  
Author(s):  
Luc R. Van Loon ◽  
P. Wersin ◽  
J. M. Soler ◽  
J. Eikenberg ◽  
Th. Gimmi ◽  
...  

SummaryThe diffusion properties of the Opalinus Clay were studied in the underground research laboratory at Mont Terri (Canton Jura, Switzerland) and the results were compared with diffusion data measured in the laboratory on small-scale samples. The diffusion of HTO,


2021 ◽  
Author(s):  
Matias Alonso ◽  
Jean Vaunat ◽  
Minh-Ngoc Vu ◽  
Antonio Gens

<p>Argillaceous rocks have great potential as possible geological host medium to store radioactive waste.  Andra is leading the design of a deep geological nuclear waste repository to be located in the Callovo-Oxfordian formation. In the framework of this project, excavations of large diameter galleries are contemplated to access and to store intermediate-level long-lived nuclear waste at repository main level. The closure of the repository will be realized by building sealing structures of expansive material.</p><p>The response of such structures is affected by several thermo-hydro-mechanical coupled processes taking place in the near and far field of the argillaceous formations. They include the formation of an excavation induced damaged zone around the galleries, the impact of the thermal load on host rock pressures and deformations, the long-term interaction with support concrete structural elements and the hydration and swelling of sealing materials. As a result, the study of their performance requires to perform simulation works of increasing complexity in terms of coupling equations, problem geometry and material behaviour. As well, challenging computational aspects, as the ones related to fractures creation and propagation, have to be considered for a representative analysis of the problem.</p><p>This work presents advanced large scale THM numerical models to provide keys about the response of the host rock around large diameter galleries during excavation and further thermal load as well as to analyse the performance of large diameter sealing structures. Particular features of the models include on one hand advanced constitutive laws to capture the development of the fractured zone around excavations, the behaviour of host rock/gallery support interfaces and the multi-scale response of bentonitic backfill. On the other hand, simulations consider geometries including constructive details of interest at decimetre scale within large discretization domain covering the whole formation stratigraphic column.</p><p>These challenging simulations provided qualitative and quantitative results on key aspects for natural and engineered barrier integrity, like extension of the damaged zone, impact of the thermal load and water pressure variations in the surrounding geological layers, duration of natural hydration phase, swelling pressure development and seals global stability.</p>


Author(s):  
Toshiyuki Matsuoka ◽  
Kenji Amano ◽  
Hideaki Osawa ◽  
Takeshi Semba

It is important for site characterization projects to manage the decision-making process with transparency and traceability and to transfer the technical know-how developed and accumulated during the research and development to the implementing phase as well as to future generations. The modeling of a geological environment supports efforts to clarify the degree of understanding regarding that geological environment, including uncertainty. Evaluation of the impact of uncertainties in a geological environment model is important to identify and prioritize key issues for further investigations. Therefore, a plan for site characterization should be made based on the results of the modeling. The aim of this study is to support the planning of initial surface-based site characterization based on the technical know-how accumulated from the Mizunami Underground Research Laboratory Project and the Horonobe Underground Research Laboratory Project. These projects are broad scientific studies of the deep geological environment that are a basis for research and development for the geological disposal of high-level radioactive wastes. In this study, the work-flow followed in developing the geological model, one of the geological environment models, and the related technical know-how acquired from literature data have been summarized.


MRS Advances ◽  
2016 ◽  
Vol 1 (63-64) ◽  
pp. 4185-4191 ◽  
Author(s):  
Sophia Necib ◽  
Christian Bataillon ◽  
Sylvie Daumas ◽  
Michel L. Schlegel ◽  
Didier Crusset

ABSTRACTCarbon steel (C-steel) is studied to be the reference material for the metallic components in the high level waste (HLW) repository concepts of several European countries such as France, Switzerland, Belgium.Electrochemical impedance spectroscopy (EIS) was performed over a period of 7 years, to determine the instantaneous corrosion rate (CR) of carbon steel (C-steel) in contact with clay porewater in diffusive regime. The study was conducted at the Mont Terri underground research laboratory (URL) located in Switzerland. The test chamber was at a depth of 8 m under anoxic conditions at 90°C in a vertical and descending borehole drilled in Opalinus clay (OPA). Microbial and chemical investigations were conducted on porewater in contact with C-steel as well as directly on C-steel surface further to dismantling.The results showed clearly a decrease of the CR over time followed by a steady state below 1 µm/year. Sulphate and thiosulphate reducing bacteria were observed in porewater and at the metal surface, with a higher concentration of mesophilic and thermophilic bacteria respectively. The metal surface characterizations revealed the presence of magnetite, mackinawite, hydroxychloride and siderite with local traces of oxidizing species such as goethite.


2021 ◽  
Vol 1 ◽  
pp. 103-104
Author(s):  
Nikoleta Morelová ◽  
Kathy Dardenne ◽  
Nicolas Finck ◽  
Frank Heberling ◽  
Volker Metz ◽  
...  

Abstract. Carbon steel is a potential canister material for the disposal of high-level radioactive waste in deep geological repositories in clays and clay rocks. Bentonite is considered as a potential backfill material for those multi-barrier systems. To predict the long-term performance and for safety assessment the knowledge of canister corrosion behavior is important. The corrosion products formed and mineralogically altered bentonite at the canister/bentonite interface can potentially provide an additional barrier against radionuclide migration. In-situ corrosion experiments were performed at the Mont Terri underground research laboratory. Coupons of carbon steel were embedded in Volclay MX-80 bentonite with controlled densities, installed in a borehole under simulated repository and anaerobic conditions and exposed to natural Opalinus clay porewater for a period up to 5.5 years (Smart et al., 2017). In the present study, the bentonite layer at the canister/bentonite interface was characterized by complementary microscopic and spectroscopic techniques (XPS, SEM-EDX, µXANES) under anoxic conditions. The interface revealed reddish-brown staining up to 2 mm depth into the bentonite in the zone adjacent to the steel in all three obtained samples. The XPS analysis revealed formation of sulfides at the interface consisting of iron and other trace metals present in the steel. The SEM-EDX analyses of the interface (embedded cross-cut with steel removed) showed different degrees of calcium enrichment in the bentonite adjacent to the metal for various samples. The µXRF analysis performed on the bentonite at the interface showed a scarce or distinct calcium-enriched rim up to 100 µm into the bentonite and iron-enriched rim depending on the sample (one sample in Fig. 1), while µXANES analysis revealed formation of iron silicate compounds in the reacted reddish-brown zone. The iron appears to displace calcium from the interlayer sites in montmorillonite. The calcium then precipitates at the interface as calcite. The extent of this process seems to be strongly related to the bentonite density. The steel coupon was removed prior to embedding, with the location marked as resin in Fig. 1. A line scan from the edge towards the bulk bentonite did not indicate any systematic gradient in the Fe2+/3+ ratio. The formation of mixed Fe2+/3+ silicate compounds appears to be heterogeneous. This work contributes to an increasing understanding of steel corrosion mechanisms in clay, which can improve the robustness of canister lifetime predictions.


Sign in / Sign up

Export Citation Format

Share Document