food web dynamics
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 25)

H-INDEX

34
(FIVE YEARS 4)

Author(s):  
Silva Uusi-Heikkilä ◽  
Tommi Perälä ◽  
Anna Kuparinen

Trophic cascade studies often rely on linear food chains instead of complex food webs and are typically measured as biomass averages, not as biomass variation. We study trophic cascades propagating across a complex food web including a measure of biomass variation in addition to biomass average. We examined whether different fishing strategies induce trophic cascades and whether the cascades differ from each other. We utilized an allometric trophic network (ATN) model to mechanistically study fishing-induced changes in food-web dynamics. Different fishing strategies did not trigger traditional, reciprocal trophic cascades, as measured in biomass averages. Instead, fishing triggered a variation cascade that propagated across the food web including fish, zooplankton and phytoplankton species. In fisheries that removed a large amount of top-predatory and cannibalistic fish, the biomass oscillations started to decrease after fishing was started. In fisheries that mainly targeted large planktivorous fish, the biomass oscillations did not dampen, but slightly increased over time. Removing species with specific ecological functions might alter the food web dynamics and potentially affect the ecological resilience of aquatic ecosystems.


2021 ◽  
Author(s):  
Kate L. Laskowski ◽  
Marta M. Alirangues Nunez ◽  
Sabine Hilt ◽  
Mark O. Gessner ◽  
Thomas Mehner

2021 ◽  
Author(s):  
Markku Viitasalo ◽  
Erik Bonsdorff

Abstract. Climate change has multiple direct and indirect potentially synergistic effects on Baltic Sea species, organism communities, and on ecosystem functioning, through physical and biogeochemical environmental characteristics of the sea. Associated indirect and secondary effects on species interactions, trophic dynamics and ecosystem function are expected to be significant. Evidence on effects of climate are compiled from and reviewed for field studies, experimental work, as well as modelling studies primarily from published literature after 2010. The responses vary within and between species groups, even between sibling species. Such subtle differences, as well as secondary feedbacks and altered trophic pathways, make projections difficult. Some common patterns arise from the wealth of recent studies, however. It is likely that the combined effects of increased external nutrient loads, stratification and internal loading will improve the conditions for cyanobacterial blooms in large parts of the Baltic. In the northernmost areas the increasing allochtonous DOM may further complicate the picture by increasing heterotrophy and by decreasing food web efficiency. This effect may, however, be counteracted by the intensification of the bacteria-flagellate-microzooplankton-mesozooplankton link, which may change the system from a bottom-up controlled one to a top-down controlled one. In deep benthic communities, continued eutrophication may promote higher sedimentation of organic matter and increase zoobenthic biomasses, but eventually increasing stratification and hypoxia/anoxia will disrupt benthic-pelagic coupling, leading to reduced benthic biomass. In the photic benthic systems warmer winters with less ice and nutrient increase enhances eutrophication. The projected salinity decline suppresses marine species, and temperature increase overgrowth of perennial macroalgae by annual filamentous alga throughout the growing-season, and major changes in the marine entire ecosystem are expected. The changes in environmental conditions probably also lead to increased establishment of non-indigenous species, potentially affecting food web dynamics in large areas of the Baltic Sea. However, several modelling studies have concluded that nutrient reductions according to the Baltic Sea Action Plan of Helsinki Commission may be a stronger driver for ecosystem functions in the Baltic Sea than climate change. Such studies highlight the importance of studying the Baltic Sea as an interlinked socio-ecological system. Knowledge gaps include uncertainties in projecting the future salinity level as well as stratification under different climate forcings. This weakens our ability to project how overall biodiversity, pelagic productivity, fish populations, and macroalgal communities may change in the future. Experimental work must be better integrated into studies of food web dynamics, to get a more comprehensive view of the responses of the pelagic and benthic systems to climate change, from bacteria to fish. Few studies have holistically investigated the shallow water ecosystems holistically. There are complex climate-induced interactions and multiple feedbacks between algae, grazers and their predators, that are poorly known, as are the effects of non-native invasive species. Finally, both 2D species distribution models and 3D ecosystem models could benefit from better integration of approaches including physical, chemical and biological parameters.


2021 ◽  
Vol 8 ◽  
Author(s):  
Simona Sporta Caputi ◽  
Giulio Careddu ◽  
Edoardo Calizza ◽  
Federico Fiorentino ◽  
Deborah Maccapan ◽  
...  

2021 ◽  
Vol 251 ◽  
pp. 107259
Author(s):  
D. Szalaj ◽  
M.A. Torres ◽  
T. Veiga-Malta ◽  
M.M. Angélico ◽  
L. Sobrinho-Gonçalves ◽  
...  

Author(s):  
Susanne Kortsch ◽  
Romain Frelat ◽  
Laurene Pecuchet ◽  
Pierre Olivier ◽  
Ivars Putnis ◽  
...  

2020 ◽  
Vol 58 (1) ◽  
pp. 104-113
Author(s):  
John‐André Henden ◽  
Dorothee Ehrich ◽  
Eeva M. Soininen ◽  
Rolf A. Ims

Author(s):  
Miram R Gleiber ◽  
Su Sponaugle ◽  
Robert K Cowen

Abstract Restricted to low-productivity environments near their thermal maxima, larval tunas may be threatened by warming global temperatures, yet our understanding of how they are constrained is limited. We examined blackfin tuna (Thunnus atlanticus, presumptive) diet and growth in the context of their prey and predators in the Straits of Florida in 2 years with contrasting summer conditions: low temperature (26.7–28.3°C)–high prey and high temperature (28.4–29.0°C)–low prey. In the cooler, high-prey conditions, larvae had 30% faster growth (0.45 mm d−1), fuller guts from predominantly feeding on calanoid copepods, and were 10× more abundant, dominating the larval fish assemblage. In contrast, in warm, low-prey conditions fewer, younger, and slower-growing (0.35 mm d−1) T. atlanticus fed predominantly on nauplii and had less full guts. Modelling individual growth across years revealed that growth peaked at an optimum of 28.5°C (5°C below known thermal maxima in the field) and high densities of predators selectively consumed slower-growing larvae. Low-prey availability may reduce the thermal optima of larvae, as growth and survival are diminished when low prey and high temperature coincide. Our results illustrate the importance of considering food web dynamics with temperature when predicting the response of organisms to ecosystem variability, particularly ongoing climate change.


Sign in / Sign up

Export Citation Format

Share Document