longtime behavior
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 15)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Christian Kuehn ◽  
Alexandra Neamţu ◽  
Stefanie Sonner

AbstractWe investigate the longtime behavior of stochastic partial differential equations (SPDEs) with differential operators that depend on time and the underlying probability space. In particular, we consider stochastic parabolic evolution problems in Banach spaces with additive noise and prove the existence of random exponential attractors. These are compact random sets of finite fractal dimension that contain the global random attractor and are attracting at an exponential rate. In order to apply the framework of random dynamical systems, we use the concept of pathwise mild solutions.


Author(s):  
T. Buckmaster ◽  
P. Germain ◽  
Z. Hani ◽  
J. Shatah

AbstractConsider the cubic nonlinear Schrödinger equation set on a d-dimensional torus, with data whose Fourier coefficients have phases which are uniformly distributed and independent. We show that, on average, the evolution of the moduli of the Fourier coefficients is governed by the so-called wave kinetic equation, predicted in wave turbulence theory, on a nontrivial timescale.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Mouhamadou Samsidy Goudiaby ◽  
Ababacar Diagne ◽  
Leon Matar Tine

<p style='text-indent:20px;'>We consider an unconditional fully discrete finite element scheme for a nematic liquid crystal flow with different kinematic transport properties. We prove that the scheme converges towards a unique critical point of the elastic energy subject to the finite element subspace, when the number of time steps go to infinity while the time step and mesh size are fixed. A Lojasiewicz type inequality, which is the key for getting the time asymptotic convergence of the whole sequence furnished by the numerical scheme, is also derived.</p>


2020 ◽  
Vol 146 ◽  
pp. 104806
Author(s):  
T.D. Tuong ◽  
N.N. Nguyen ◽  
G. Yin

2020 ◽  
Vol 4 (1) ◽  
pp. 400-416
Author(s):  
Abdelmajid Ali Dafallah ◽  
◽  
Fadlallah Mustafa Mosa ◽  
Mohamed Y. A. Bakhet ◽  
Eshag Mohamed Ahmed ◽  
...  

In this paper, we concerned to prove the existence of a random attractor for the stochastic dynamical system generated by the extensible beam equation with localized non-linear damping and linear memory defined on bounded domain. First we investigate the existence and uniqueness of solutions, bounded absorbing set, then the asymptotic compactness. Longtime behavior of solutions is analyzed. In particular, in the non-autonomous case, the existence of a random attractor attractors for solutions is achieved.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 715 ◽  
Author(s):  
Luc Robbiano ◽  
Qiong Zhang

In this paper, we analyze the longtime behavior of the wave equation with local Kelvin-Voigt Damping. Through introducing proper class symbol and pseudo-diff-calculus, we obtain a Carleman estimate, and then establish an estimate on the corresponding resolvent operator. As a result, we show the logarithmic decay rate for energy of the system without any geometric assumption on the subdomain on which the damping is effective.


Sign in / Sign up

Export Citation Format

Share Document