seismic source location
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 10)

H-INDEX

3
(FIVE YEARS 1)

10.6036/10370 ◽  
2022 ◽  
Vol 97 (1) ◽  
pp. 39-45
Author(s):  
Zhigang Wang ◽  
Ji Li ◽  
Bo Li

Seismic source location is the most fundamental and most important problem in microseismic monitoring. However, only P wave has been mostly applied in the existing microseismic monitoring networks, with low location accuracy and poor stability of location result for the microseismic events occurring beyond monitoring networks. The seismic source location was implemented using P wave and S wave in this study to expand the effective monitoring area of a microseismic monitoring network and improve its location accuracy for microseismic events nearby the monitoring network. Then, the seismic source location mechanism using P-S wave was revealed through theoretical derivation and analysis. Subsequently, the program development and numerical simulation were combined to analyze and compare systematically the location effects of differently distributed monitoring networks, those consisting of different quantities of sensors, and those with S wave contained in some sensors under two circumstances: combination of P wave and S wave and single use of P wave. Results demonstrate that adding S wave in the plane enhances the accuracy control in the radius direction of the monitoring network. After S wave is included, the location accuracy within a certain area beyond the monitoring network is improved considerably, the effective monitoring area of the whole network is expanded, and the unstable location zones using only P wave are eliminated. The location results of differently distributed monitoring networks and the influence laws of the quantity of sensors constituting the networks on the location results are acquired. This study provides evidence for microseismic monitoring to realize accurate and stable location within a larger range. Keywords: seismic source location, P wave and S wave, mechanism, location effect


2021 ◽  
Vol 118 (28) ◽  
pp. e2023757118
Author(s):  
Ugo Nanni ◽  
Florent Gimbert ◽  
Philippe Roux ◽  
Albanne Lecointre

Subglacial water flow strongly modulates glacier basal motion, which itself strongly influences the contributions of glaciers and ice sheets to sea level rise. However, our understanding of when and where subglacial water flow enhances or impedes glacier flow is limited due to the paucity of direct observations of subglacial drainage characteristics. Here, we demonstrate that dense seismic array observations combined with an innovative systematic seismic source location technique allows the retrieval of a two-dimensional map of a subglacial drainage system, as well as its day-to-day temporal evolution. We observe with unprecedented detail when and where subglacial water flows through a cavity-like system that enhances glacier flow versus when and where water mainly flows through a channel-like system that impedes glacier flow. Most importantly, we are able to identify regions of high hydraulic connectivity within and across the cavity and channel systems, which have been identified as having a major impact on the long-term glacier response to climate warming. Applying a similar seismic monitoring strategy in other glacier settings, including for ice sheets, may help to diagnose the susceptibility of their dynamics to increased meltwater input due to climate warming.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4729
Author(s):  
Lei Li ◽  
Yujiang Xie ◽  
Jingqiang Tan

Seismic source location specifies the spatial and temporal coordinates of seismic sources and lays the foundation for advanced seismic monitoring at all scales. In this work, we firstly introduce the principles of diffraction stacking (DS) and cross-correlation stacking (CCS) for seismic location. The DS method utilizes the travel time from the source to receivers, while the CCS method considers the differential travel time from pairwise receivers to the source. Then, applications with three field datasets ranging from small-scale microseismicity to regional-scale induced seismicity are presented to investigate the feasibility, imaging resolution, and location reliability of the two stacking operators. Both of the two methods can focus the source energy by stacking the waveforms of the selected events. Multiscale examples demonstrate that the imaging resolution is not only determined by the inherent property of the stacking operator but also highly dependent on the acquisition geometry. By comparing to location results from other methods, we show that the location bias is consistent with the scale size, as well as the frequency contents of the seismograms and grid spacing values.


2019 ◽  
Vol 67 (6) ◽  
pp. 1525-1533 ◽  
Author(s):  
Anna Franczyk

Abstract The time-reversal imaging method has become a standard technique for seismic source location using both acoustic and elastic wave equations. Although there are many studies on the determination of the relevant parameter for visualization of the time-reversal method, little has been done so far to investigate the accuracy of seismic source location depending on parameters such as the geometry of the seismic network or underestimation of the velocity model. This paper investigates the importance of the accuracy of seismic source location using the time-reversal imaging method of input variables such as seismic network geometry and the assumed geological model. For efficient visualization of seismic wave propagation and interference, peak-to-average power ratio was used. Identification of the importance of variables used in seismic source location was obtained using the Morris elementary effect method, which is a global sensitivity analysis method.


2019 ◽  
Vol 36 (4) ◽  
pp. 1849-1856
Author(s):  
L. Z. Wu ◽  
S. H. Li ◽  
R. Q. Huang ◽  
S. Y. Wang

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Bao-xin Jia ◽  
Lin-li Zhou ◽  
Yi-shan Pan ◽  
Hao Chen

A site experiment is performed herein within a 100 m range using a high-frequency structure activity monitor to explore the impact of different factors on the microseismic source location and analyze the range of influence of the velocity model, number of stations, and array surface on the seismic source location. Moreover, the impact of wave velocity, velocity-free location algorithm, and position of the seismic source on the microseismic location error of mines is discussed by establishing the ideal theoretical model of the wave velocity location and with particle swarm optimization. The impact of the number of stations and tables on the location precision is also explored by using the microseismic signals produced by the artificial seismic source. The results show that, for the location model containing the velocity, the velocity error would greatly affect the location precision, and the velocity-free algorithm receives good location results. The location result is more satisfactory when the seismic source point falls in between array envelope lines. The seismic source location precision is in direct proportion to the number of stations. According to the experiment, within a 100 m range, when the number of stations is over 12, the effect does not significantly grow with the increase of stations; the number of tables affects the location precision; and the multitable location effect is significantly superior to the single-table effect. The research shows that the optimal station density is 0.0192%, and the appropriate sensor layout to form a multitable monitoring network may effectively enhance the microseismic source precision of mines through the selection of a velocity-free location model. On the contrary, the number of stations can be reduced on the premise of the allowable error of the seismic source location, which may effectively reduce the monitoring cost.


Sign in / Sign up

Export Citation Format

Share Document