Generalized Bäcklund-Darboux transforms for Coxeter-Toda flows from a cluster algebra perspective

Author(s):  
Michael Gekhtman ◽  
Michael Shapiro ◽  
Alek Vainshtein
Author(s):  
Giulio Bonelli ◽  
Fabrizio Del Monte ◽  
Alessandro Tanzini

AbstractWe study the discrete flows generated by the symmetry group of the BPS quivers for Calabi–Yau geometries describing five-dimensional superconformal quantum field theories on a circle. These flows naturally describe the BPS particle spectrum of such theories and at the same time generate bilinear equations of q-difference type which, in the rank one case, are q-Painlevé equations. The solutions of these equations are shown to be given by grand canonical topological string partition functions which we identify with $$\tau $$ τ -functions of the cluster algebra associated to the quiver. We exemplify our construction in the case corresponding to five-dimensional SU(2) pure super Yang–Mills and $$N_f=2$$ N f = 2 on a circle.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
P. Gavrylenko ◽  
M. Semenyakin ◽  
Y. Zenkevich

Abstract We notice a remarkable connection between the Bazhanov-Sergeev solution of Zamolodchikov tetrahedron equation and certain well-known cluster algebra expression. The tetrahedron transformation is then identified with a sequence of four mutations. As an application of the new formalism, we show how to construct an integrable system with the spectral curve with arbitrary symmetric Newton polygon. Finally, we embed this integrable system into the double Bruhat cell of a Poisson-Lie group, show how triangular decomposition can be used to extend our approach to the general non-symmetric Newton polygons, and prove the Lemma which classifies conjugacy classes in double affine Weyl groups of A-type by decorated Newton polygons.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Song He ◽  
Zhenjie Li ◽  
Qinglin Yang

Abstract We study cluster algebras for some all-loop Feynman integrals, including box-ladder, penta-box-ladder, and double-penta-ladder integrals. In addition to the well-known box ladder whose symbol alphabet is $$ {D}_2\simeq {A}_1^2 $$ D 2 ≃ A 1 2 , we show that penta-box ladder has an alphabet of D3 ≃ A3 and provide strong evidence that the alphabet of seven-point double-penta ladders can be identified with a D4 cluster algebra. We relate the symbol letters to the u variables of cluster configuration space, which provide a gauge-invariant description of the cluster algebra, and we find various sub-algebras associated with limits of the integrals. We comment on constraints similar to extended-Steinmann relations or cluster adjacency conditions on cluster function spaces. Our study of the symbol and alphabet is based on the recently proposed Wilson-loop d log representation, which allows us to predict higher-loop alphabet recursively; by applying it to certain eight-point and nine-point double-penta ladders, we also find D5 and D6 cluster functions respectively.


2018 ◽  
Vol 2020 (3) ◽  
pp. 914-956 ◽  
Author(s):  
Dylan Rupel ◽  
Salvatore Stella ◽  
Harold Williams

Abstract The cluster algebra of any acyclic quiver can be realized as the coordinate ring of a subvariety of a Kac–Moody group—the quiver is an orientation of its Dynkin diagram, defining a Coxeter element and thereby a double Bruhat cell. We use this realization to connect representations of the quiver with those of the group. We show that cluster variables of preprojective (resp. postinjective) quiver representations are realized by generalized minors of highest-weight (resp. lowest-weight) group representations, generalizing results of Yang–Zelevinsky in finite type. In type $A_{n}^{\!(1)}$ and finitely many other affine types, we show that cluster variables of regular quiver representations are realized by generalized minors of group representations that are neither highest- nor lowest-weight; we conjecture this holds more generally.


Geometry ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Katsuhiro Moriya

The notion of a generalized harmonic inverse mean curvature surface in the Euclidean four-space is introduced. A backward Bäcklund transform of a generalized harmonic inverse mean curvature surface is defined. A Darboux transform of a generalized harmonic inverse mean curvature surface is constructed by a backward Bäcklund transform. For a given isothermic harmonic inverse mean curvature surface, its classical Darboux transform is a harmonic inverse mean curvature surface. Then a transform of a solution to the Painlevé III equation in trigonometric form is defined by a classical Darboux transform of a harmonic inverse mean curvature surface of revolution.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Christof Geiß ◽  
Daniel Labardini-Fragoso ◽  
Jan Schröer

AbstractWe study the affine schemes of modules over gentle algebras. We describe the smooth points of these schemes, and we also analyze their irreducible components in detail. Several of our results generalize formerly known results, e.g. by dropping acyclicity, and by incorporating band modules. A special class of gentle algebras are Jacobian algebras arising from triangulations of unpunctured marked surfaces. For these we obtain a bijection between the set of generically $$\tau $$ τ -reduced decorated irreducible components and the set of laminations of the surface. As an application, we get that the set of bangle functions (defined by Musiker–Schiffler–Williams) in the upper cluster algebra associated with the surface coincides with the set of generic Caldero-Chapoton functions (defined by Geiß–Leclerc–Schröer).


10.37236/229 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Philippe Di Francesco ◽  
Rinat Kedem

We give the path model solution for the cluster algebra variables of the $T$-system of type $A_r$ with generic boundary conditions. The solutions are partition functions of (strongly) non-intersecting paths on weighted graphs. The graphs are the same as those constructed for the $Q$-system in our earlier work, and depend on the seed or initial data in terms of which the solutions are given. The weights are "time-dependent" where "time" is the extra parameter which distinguishes the $T$-system from the $Q$-system, usually identified as the spectral parameter in the context of representation theory. The path model is alternatively described on a graph with non-commutative weights, and cluster mutations are interpreted as non-commutative continued fraction rearrangements. As a consequence, the solution is a positive Laurent polynomial of the seed data.


10.37236/6464 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Kyungyong Lee ◽  
Li Li ◽  
Ba Nguyen

Lots of research focuses on the combinatorics behind various bases of cluster algebras. This paper studies the natural basis of a type $A$ cluster algebra, which consists of all cluster monomials. We introduce a new kind of combinatorial formula for the cluster monomials in terms of the so-called globally compatible collections. We give bijective proofs of these formulas by comparing with the well-known combinatorial models of the $T$-paths and of the perfect matchings in a snake diagram. For cluster variables of a type $A$ cluster algebra, we give a bijection that relates our new formula with the theta functions constructed by Gross, Hacking, Keel and Kontsevich.


10.37236/7188 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Bolor Turmunkh

Nakajima (2003) introduced a $t$-deformation of $q$-characters, $(q,t)$-characters for short, and their twisted multiplication through the geometry of quiver varieties. The Nakajima $(q,t)$-characters of Kirillov-Reshetikhin modules satisfy a $t$-deformed $T$-system. The $T$-system is a discrete dynamical system that can be interpreted as a mutation relation in a cluster algebra in two different ways, depending on the choice of direction of evolution. In this paper, we show that the Nakajima $t$-deformed $T$-system of type $A_r$ forms a quantum mutation relation in a quantization of exactly one of the cluster algebra structures attached to the $T$-system.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Emily Barnard ◽  
Emily Meehan ◽  
Shira Polster ◽  
Nathan Reading

International audience We construct universal geometric coefficients for the cluster algebra associated to the four-punctured sphere and obtain, as a by-product, the $g$ -vectors of cluster variables. We also construct the rational part of the mutation fan. These constructions rely on a classification of the allowable curves (the curves which can appear in quasi-laminations). The classification allows us to prove the Null Tangle Property for the four-punctured sphere, thus adding this surface to a short list of surfaces for which this property is known. The Null Tangle Property then implies that the shear coordinates of allowable curves are the universal coefficients. We compute these shear coordinates to obtain universal geometric coefficients. Nous construisons des coefficients géométriques universels pour l’algèbre amassée associée à la sphère privée de 4 points, et obtenons ce faisant les $g$-vecteurs des variables d’amas. Nous construisons aussi la partie rationnelle de l’éventail de mutation. Ces constructions reposent sur la classification des courbes admissibles (les courbes qui peuvent apparaître dans les quasi-laminations). Cette classification nous permet de prouver la “Null Tangle Property” pour la sphère privée de 4 points, ajoutant ainsi cette surface à la courte liste de surfaces pour lesquelles cette propriété est connue. La “Null Tangle Property” implique alors que les coordonnées de décalage des courbes admissibles sont les coefficients universels. Nous calculons ces coordonnées de décalage pour obtenir les coefficients géométriques universels.


Sign in / Sign up

Export Citation Format

Share Document