slurry wall
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 10)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
pp. 313-323
Author(s):  
Vasilii Komolov ◽  
Artem Belikov ◽  
Peter Demenkov
Keyword(s):  

2020 ◽  
Vol 11 (2) ◽  
pp. 49-61
Author(s):  
A. A Churkin ◽  
I. N Lozovsky

Underground structures like diaphragm and pile walls are constructed to organize waterproof curtains, protect pit sides, and transfer loads from the structures. Violations of the construction technological process can lead to the formation of defects. To prevent adverse consequences, before excavation, it is necessary to control the integrity of the slurry walls using non-destructive geophysical methods. A review of geophysical slurry wall quality control methods based on the excitation and registration of physical fields through access tubes installed in the reinforcement cage, in wells drilled near the structure or on the surface of the structure, is presented. The main capabilities and limitations of the methods are given. Cross-hole ultrasonic logging was used to study the section of the slurry wall during the construction of the Moscow Metro station. The results of parallel soundings made it possible to identify anomalous zones, interpreted as defects. The geometric dimensions of one of the major defects were refined by ultrasonic tomography. For the first time in Russian testing practice, thermal integrity profiling was applied to study the diaphragm wall at the base of a residential building. The results of temperature monitoring during the concrete hardening are presented. According to the method, a major flaw, excess of the design mark of the wall bottom and bulging of the structure were revealed. The results of thermal integrity profiling were verified by ultrasonic logging. The combined use of thermal and ultrasonic methods can be recommended as a reliable tool for integrity testing of diaphragm and pile walls. To carry out the measurements, the access tubes shall be included in the reinforcement cage of the structure at the design stage.


2020 ◽  
Vol 65 (sup1) ◽  
pp. P44-P50
Author(s):  
Lisa Conte ◽  
Joe Graham-Felsen ◽  
Amanda Trienens
Keyword(s):  

Author(s):  
Yu-Ling Yang ◽  
Krishna R. Reddy ◽  
Wen-Jie Zhang ◽  
Ri-Dong Fan ◽  
Yan-Jun Du

This study investigated the feasibility of using sodium hexametaphosphate (SHMP)- amended calcium (Ca) bentonite in backfills for slurry trench cutoff walls for the containment of lead (Pb) contamination in groundwater. Backfills composed of 80 wt% sand and 20 wt% either Ca-bentonite or SHMP-amended Ca-bentonite were tested for hydraulic conductivity and sorption properties by conducting laboratory flexible-wall hydraulic conductivity tests and batch isothermal sorption experiments, respectively. The results showed that the SHMP amendment causes a one order of magnitude decrease in hydraulic conductivity of the backfill using tap water (1.9 to 3.0 × 10−10 m/s). Testing using 1000 mg/L Pb solution resulted insignificant variation in hydraulic conductivity of the amended backfill. Moreover, SHMP-amendment induced favorable conditions for increased sorption capacity of the backfill, with 1.5 times higher retardation factor relative to the unamended backfill. The Pb transport modeling through an hypothetical 1-m-thick slurry wall composed of amended backfill revealed 12 to 24 times of longer breakthrough time for Pb migration as compared to results obtained for the same thickness slurry wall with unamended backfill, which is attributed to decrease in seepage velocity combined with increase in retardation factor of the backfill with SHMP amendment. Overall, SHMP is shown to be a promising Ca-bentontie modifier for use in backfill for slurry trench cutoff wall for effective containment of Pb-contaminated groundwater.


2020 ◽  
Vol 195 ◽  
pp. 03032 ◽  
Author(s):  
Paolo Trischitta ◽  
Renato Maria Cosentini ◽  
Gabriele Della Vecchia ◽  
Gianluigi Sanetti ◽  
Guido Musso

Cement bentonite mixtures are often used to build slurry walls for the containment of both aqueous and non aqueous pollutants, due to their quite low hydraulic conductivity and relatively high ductility and strength. Although their hydro-mechanical behaviour in saturated conditions has been studied in the past, a part of the slurry wall is expected to rest above the groundwater level. The hydraulic characterization in unsaturated conditions is then particularly relevant to evaluate the performance of the barrier, especially when it is aimed at containing non aqueous pollutant liquids which are lighter than water (LNAPL). These non wetting fluids rest above the water table and their penetration is possible just if the barrier is unsaturated. This paper presents some preliminary results of a laboratory characterization of the water retention behaviour of three different cement bentonite mixtures. The mixtures, prepared at cement – bentonite mass ratios ranging from 4:1 to 6:1, were immersed in water and cured for 28 days. Their water retention behaviour was then determined along drying and wetting paths through different techniques, namely axis translation, filter paper and vapour equilibrium. In the high suction range, the water content – suction relationship was found to be independent of cement-bentonite ratio. In the low suction range, the water content at a given suction was found to decrease for increasing cement bentonite ratios.


2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Mingfeng Lei ◽  
Linghui Liu ◽  
Yuexiang Lin ◽  
Chenghua Shi ◽  
Weichao Yang ◽  
...  

This paper performs an extensive literature survey and example investigation on the stabilisation of slurry wall trenches during the construction of diaphragm wall panel trenches, and the failure modes of slurry wall trench instability, the stability theoretical analysis models and methods, the slurry formation and its protection mechanism, the influence of related factors on slurry wall trench stabilisation, and other related problems are summarized and analyzed emphatically. And then, based on the limit equilibrium analysis method, the mechanical models of the overall stability and local stability of the trench wall are established, respectively, and the design method of slurry unit weight is derived to ensure the stability of the trench wall. Furthermore, an example application shows that the established slurry unit weight design method is reliable. At last, this paper also proposes the focus and direction for follow-up work, that is, to construct an accurate and effective theoretical analysis model of slurry wall trench instability considering the influence of multiple factors and the calculation method of the slurry cake and its mechanical or mathematical relationship with slurry quality.


Sign in / Sign up

Export Citation Format

Share Document