urban canopy flow
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 3)

H-INDEX

1
(FIVE YEARS 1)

2021 ◽  
Vol 13 (2) ◽  
pp. 586
Author(s):  
Ahmad Faiz Mohammad ◽  
Naoki Ikegaya ◽  
Ryo Hikizu ◽  
Sheikh Ahmad Zaki

Understanding the characteristics of natural, wind-induced ventilation of buildings is essential for accurate predictions of ventilation flow rates; however, indoor ventilation is significantly influenced by surrounding buildings. Therefore, a series of wind-tunnel experiments were performed to clarify the relationship between outdoor and indoor air flows around and within a target cube model with several openings. Two surrounding building arrangements, namely square (SQ) and staggered (ST), were placed under the condition of a building coverage ratio of 25%. The results indicated that the wind speed near the windward openings on the streamwise faces showed 0.3 to the reference wind speed, whereas those on the lateral faces were less than 0.1; these numbers indicate that the opening positions significantly affect the mean indoor wind speed. Furthermore, the temporal fluctuations of velocities near the opening demonstrated that the introduction of the flow is significantly affected by turbulent flow due to the surrounding buildings. In addition, correlation between the outdoor and indoor air flows was observed. The highest correlations were obtained for both opening conditions with a certain temporal delay. This result indicates that indoor air flows become turbulent because of the turbulent flows generated by the surrounding outdoor buildings; however, slight temporal delays could occur between indoor and outdoor air flows. Although the present study focuses on the fundamental turbulent characteristics of indoor and outdoor air flows, such findings are essential for accurately predicting the ventilation flow rate due to turbulent air flows for sheltered buildings.


2020 ◽  
Vol 13 (3) ◽  
pp. 937-953 ◽  
Author(s):  
Negin Nazarian ◽  
E. Scott Krayenhoff ◽  
Alberto Martilli

Abstract. In mesoscale climate models, urban canopy flow is typically parameterized in terms of the horizontally averaged (1-D) flow and scalar transport, and these parameterizations can be informed by computational fluid dynamics (CFD) simulations of the urban climate at the microscale. Reynolds averaged Navier–Stokes simulation (RANS) models have previously been employed to derive vertical profiles of turbulent length scale and drag coefficient for such parameterization. However, there is substantial evidence that RANS models fall short in accurately representing turbulent flow fields in the urban roughness sublayer. When compared with more accurate flow modeling such as large-eddy simulations (LES), we observed that vertical profiles of turbulent kinetic energy and associated turbulent length scales obtained from RANS models are substantially smaller specifically in the urban canopy. Accordingly, using LES results, we revisited the urban canopy parameterizations employed in the one-dimensional model of turbulent flow through urban areas and updated the parameterization of turbulent length scale and drag coefficient. Additionally, we included the parameterization of the dispersive stress, previously neglected in the 1-D column model. For this objective, the PArallelized Large-Eddy Simulation Model (PALM) is used and a series of simulations in an idealized urban configuration with aligned and staggered arrays are considered. The plan area density (λp) is varied from 0.0625 to 0.44 to span a wide range of urban density (from sparsely developed to compact midrise neighborhoods, respectively). In order to ensure the accuracy of the simulation results, we rigorously evaluated the PALM results by comparing the vertical profiles of turbulent kinetic energy and Reynolds stresses with wind tunnel measurements, as well as other available LES and direct numerical simulation (DNS) studies. After implementing the updated drag coefficients and turbulent length scales in the 1-D model of urban canopy flow, we evaluated the results by (a) testing the 1-D model against the original LES results and demonstrating the differences in predictions between new (derived from LES) and old (derived from RANS) versions of the 1-D model, and (b) testing the 1-D model against LES results for a test case with realistic geometries. Results suggest a more accurate prediction of vertical turbulent exchange in urban canopies, which can consequently lead to an improved prediction of urban heat and pollutant dispersion at the mesoscale.


2019 ◽  
Author(s):  
Negin Nazarian ◽  
E. Scott Krayenhoff ◽  
Alberto Martilli

Abstract. In mesoscale climate models, urban canopy flow is typically parameterized in terms of the horizontally-averaged (1-D) flow and scalar transport, and these parameterizations can be informed by Computational Fluid Dynamics (CFD) simulations of the urban climate at the microscale. Reynolds Averaged Navier-Stokes Simulation (RANS) models have been previously employed to derive vertical profiles of turbulent length scale and drag coefficient for such parameterization. However, there is substantial evidence that RANS models fall short in accurately representing turbulent flow fields in the urban roughness sublayer. When compared with more accurate flow modeling such as Large Eddy Simulations (LES), we observed that vertical profiles of turbulent kinetic energy and associated turbulent length scales obtained from RANS models are substantially smaller specifically in the urban canopy. Accordingly, using LES results, we revisited the urban canopy parameterizations employed in the one-dimensional model of turbulent flow through urban areas, and updated the parameterization of turbulent length scale and drag coefficient. Additionally, we included the parameterization of the dispersive stress, previously neglected in the 1-D column model. For this objective, the PArallelized Large-Eddy Simulation Model (PALM) is used and a series of simulations in an idealized urban configuration with aligned and staggered arrays are considered. The plan area density is varied from 0.0625 to 0.44 to span a wide range of urban density (from sparsely developed to compact midrise neighborhoods, respectively). To ensure the accuracy of the simulation results, we rigorously evaluated the PALM results by comparing the vertical profiles of turbulent kinetic energy and Reynolds stresses with wind tunnel measurements, as well as other available LES and DNS studies. After implementing the updated drag coefficients and turbulent length scales in the 1-D model of urban canopy flow, we evaluated the results by a) testing the 1-D model against the original LES results, and demonstrating the differences in predictions between new (derived from LES) and old (derived from RANS) versions of the 1-D model, and b) testing the 1-D model against LES results for a test-case with realistic geometries. Results suggest a more accurate prediction of vertical turbulent exchange in urban canopies, which can consequently lead to an improved prediction of urban heat and pollutant dispersion at the mesoscale.


Sign in / Sign up

Export Citation Format

Share Document