scholarly journals Analysis of Tidal Accelerations in the Solar System and in Extrasolar Planetary Systems

2021 ◽  
Vol 11 (18) ◽  
pp. 8624
Author(s):  
Klaus Paschek ◽  
Arthur Roßmann ◽  
Michael Hausmann ◽  
Georg Hildenbrand

Volcanism powered by tidal forces inside celestial bodies can provide enough energy to keep important solvents for living systems in the liquid phase. A prerequisite to calculate such tidal interactions and consequences is depending on simulations for tidal accelerations in a multi-body system. Unfortunately, from measurements in many extrasolar planetary systems, only few physical and orbital parameters are well-known enough for investigated celestial bodies. For calculating tidal acceleration vectors under missing most orbital parameter exactly, a simulation method is developed that is only based on a few basic parameters, easily measurable even in extrasolar planetary systems. Such a method as the one presented here allows finding a relation between the tidal acceleration vectors and potential heating inside celestial objects. Using the values and results of our model approach to our solar system as a “gold standard” for feasibility allowed us to classify this heating in relation to different forms of volcanism. This “gold standard” approach gave us a classification measure for the relevance of tidal heating in other extrasolar systems with a reduced availability of exact physical parameters. We help to estimate conditions for the identification of potential candidates for further sophisticated investigations by more complex established methods such as viscoelastic multi-body theories. As a first example, we applied the procedures developed here to the extrasolar planetary system TRAPPIST-1 as an example to check our working hypothesis.

Author(s):  
Klaus Paschek ◽  
Arthur Roßmann ◽  
Michael Hausmann ◽  
Georg Hildenbrand

Volcanism powered by tidal forces inside celestial bodies can provide enough energy to keep important solvents for living systems in the liquid phase. Moreover, tidal forces and their environmental consequences may strongly influence habitability of planets and other celestial bodies and may result in special forms of live and living conditions. A prerequisite to calculate such tidal interactions and consequences is depending on simulations for tidal accelerations in a multi-body system. Unfortunately, from measurements in many extrasolar planetary systems only few physical and orbital parameters are well enough known for investigated celestial bodies. For calculating tidal acceleration vectors under missing most orbital parameter exactly, a simulation method is developed that is only based on a few basic parameters, easily measurable even in extrasolar planetary systems. Such a method as being presented here, allows finding a relation between the tidal acceleration vectors and potential heating inside celestial objects. Using values and results of our model approach to our solar system as a “gold standard” for feasibility allowed us to classify this heating in relation to different forms of volcanism. This “gold standard” approach gave us a classification measure for the relevance of tidal heating in other extrasolar systems with a reduced availability of exact physical parameters. We would help to estimate conditions for the identification of potential candidates for further sophisticated investigations by more complex established methods like viscoelastic multi-body theories. As a first example, we applied the procedures developed here to the extrasolar planetary system TRAPPIST-1 as an example to check our working hypothesis.


2004 ◽  
Vol 202 ◽  
pp. 175-177
Author(s):  
Tapan K. Chatterjee ◽  
V. B. Magalinsky

It is significant that the orbits of the planets in the solar system are very nearly circular, except for Mercury and Pluto where, conceivably, due to their comparatively small sizes, the tidal forces have played a less active role. Most of the suspected planets orbiting pulsars have nearly circular orbits. These systems tend to have minimum energy and are subjected to tidal forces. We find that a planet circularizes its orbit, in an effort to attain orbital stability and the ground state. Details can be found in Magalinsky & Chatterjee, 1997, and Magalinsky and Chatterjee, 2000.


2020 ◽  
Vol 636 ◽  
pp. A53 ◽  
Author(s):  
D. Turrini ◽  
A. Zinzi ◽  
J. A. Belinchon

Context. Population studies of the orbital characteristics of exoplanets in multi-planet systems have highlighted the existence of an anticorrelation between the average orbital eccentricity of planets and the number of planets of their host system, that is, its multiplicity. This effect was proposed to reflect the varying levels of violence in the dynamical evolution of planetary systems. Aims. Previous work suggested that the relative violence of the dynamical evolution of planetary systems with similar orbital architectures can be compared through the computation of their angular momentum deficit (AMD). We investigated the possibility of using a more general metric to perform analogous comparisons between planetary systems with different orbital architectures. Methods. We considered a modified version of the AMD, the normalized angular momentum deficit (NAMD), and used it to study a sample of 99 multi-planet systems containing both the currently best-characterized extrasolar systems and the solar system, that is, planetary systems with both compact and wide orbital architectures. Results. We verified that the NAMD allows us to compare the violence of the dynamical histories of multi-planet systems with different orbital architectures. We identified an anticorrelation between the NAMD and the multiplicity of the planetary systems, of which the previously observed eccentricity–multiplicity anticorrelation is a reflection. Conclusions. Our results seem to indicate that phases of dynamical instabilities and chaotic evolution are not uncommon among planetary systems. They also suggest that the efficiency of the planetary formation process in producing high-multiplicity systems is likely to be higher than that suggested by their currently known population.


Author(s):  
John Chambers ◽  
Jacqueline Mitton

The birth and evolution of our solar system is a tantalizing mystery that may one day provide answers to the question of human origins. This book tells the remarkable story of how the celestial objects that make up the solar system arose from common beginnings billions of years ago, and how scientists and philosophers have sought to unravel this mystery down through the centuries, piecing together the clues that enabled them to deduce the solar system's layout, its age, and the most likely way it formed. Drawing on the history of astronomy and the latest findings in astrophysics and the planetary sciences, the book offers the most up-to-date and authoritative treatment of the subject available. It examines how the evolving universe set the stage for the appearance of our Sun, and how the nebulous cloud of gas and dust that accompanied the young Sun eventually became the planets, comets, moons, and asteroids that exist today. It explores how each of the planets acquired its unique characteristics, why some are rocky and others gaseous, and why one planet in particular—our Earth—provided an almost perfect haven for the emergence of life. The book takes readers to the very frontiers of modern research, engaging with the latest controversies and debates. It reveals how ongoing discoveries of far-distant extrasolar planets and planetary systems are transforming our understanding of our own solar system's astonishing history and its possible fate.


Author(s):  
Karel Schrijver

In this chapter, the author summarizes the properties of the Solar System, and how these were uncovered. Over centuries, the arrangement and properties of the Solar System were determined. The distinctions between the terrestrial planets, the gas and ice giants, and their various moons are discussed. Whereas humans have walked only on the Moon, probes have visited all the planets and several moons, asteroids, and comets; samples have been returned to Earth only from our moon, a comet, and from interplanetary dust. For Earth and Moon, seismographs probed their interior, whereas for other planets insights come from spacecraft and meteorites. We learned that elements separated between planet cores and mantels because larger bodies in the Solar System were once liquid, and many still are. How water ended up where it is presents a complex puzzle. Will the characteristics of our Solar System hold true for planetary systems in general?


Author(s):  
Karel Schrijver

How many planetary systems formed before our’s did, and how many will form after? How old is the average exoplanet in the Galaxy? When did the earliest planets start forming? How different are the ages of terrestrial and giant planets? And, ultimately, what will the fate be of our Solar System, of the Milky Way Galaxy, and of the Universe around us? We cannot know the fate of individual exoplanets with great certainty, but based on population statistics this chapter sketches the past, present, and future of exoworlds and of our Earth in general terms.


Author(s):  
John H D Harrison ◽  
Amy Bonsor ◽  
Mihkel Kama ◽  
Andrew M Buchan ◽  
Simon Blouin ◽  
...  

Abstract White dwarfs that have accreted planetary bodies are a powerful probe of the bulk composition of exoplanetary material. In this paper, we present a Bayesian model to explain the abundances observed in the atmospheres of 202 DZ white dwarfs by considering the heating, geochemical differentiation, and collisional processes experienced by the planetary bodies accreted, as well as gravitational sinking. The majority (>60%) of systems are consistent with the accretion of primitive material. We attribute the small spread in refractory abundances observed to a similar spread in the initial planet-forming material, as seen in the compositions of nearby stars. A range in Na abundances in the pollutant material is attributed to a range in formation temperatures from below 1,000 K to higher than 1,400 K, suggesting that pollutant material arrives in white dwarf atmospheres from a variety of radial locations. We also find that Solar System-like differentiation is common place in exo-planetary systems. Extreme siderophile (Fe, Ni or Cr) abundances in 8 systems require the accretion of a core-rich fragment of a larger differentiated body to at least a 3σ significance, whilst one system shows evidence that it accreted a crust-rich fragment. In systems where the abundances suggest that accretion has finished (13/202), the total mass accreted can be calculated. The 13 systems are estimated to have accreted masses ranging from the mass of the Moon to half that of Vesta. Our analysis suggests that accretion continues for 11Myrs on average.


Author(s):  
Ravit Helled ◽  
Jonathan J. Fortney

Uranus and Neptune form a distinct class of planets in our Solar System. Given this fact, and ubiquity of similar-mass planets in other planetary systems, it is essential to understand their interior structure and composition. However, there are more open questions regarding these planets than answers. In this review, we concentrate on the things we do not know about the interiors of Uranus and Neptune with a focus on why the planets may be different, rather than the same. We next summarize the knowledge about the planets’ internal structure and evolution. Finally, we identify the topics that should be investigated further on the theoretical front as well as required observations from space missions. This article is part of a discussion meeting issue ‘Future exploration of ice giant systems’.


2007 ◽  
Vol 3 (S248) ◽  
pp. 66-73
Author(s):  
J.-E. Arlot

AbstractThe main goal of the astrometry of solar system objects is to build dynamical models of their motions to understand their evolution, to determine physical parameters and to build accurate ephemerides for the preparation and the exploitation of space missions. For many objects, the ground-based observations are still very important because radar or observations from space probes are not available. More, the need of observations on a long period of time makes the ground-based observations necessary. The solar system objects have very different characteristics and the increase of the astrometric accuracy will depend on the objects and on their physical characteristics. The purpose of this communication is to show how to get the best astrometric accuracy.


Sign in / Sign up

Export Citation Format

Share Document