patch connectivity
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 7)

H-INDEX

17
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Claire Jacquet ◽  
François Munoz ◽  
Núria Bonada ◽  
Thibault Datry ◽  
Jani Heino ◽  
...  

Understanding the capacity of ecological systems to withstand and recover from disturbances is a major challenge for ecological research in the context of environmental change. Disturbances have multi-scale effects: they can cause species extinctions locally and alter connectivity between habitat patches at the metacommunity level. Yet, our understanding of how disturbances influence landscape connectivity remains limited. To fill this gap, we develop a novel connectivity index that integrates the temporal variation of patch connectivity induced by disturbances, which can be applied to any spatially-structured habitat. We then combine this index with a metacommunity model to specifically investigate biodiversity recovery from drying events in river network metacommunities. We demonstrate that patch connectivity explains variations of species richness between groups of organisms with contrasting dispersal modes and captures the effect of drying intensity (i.e., fraction of patches that dry-up) and drying location on community recovery. As a general rule, loss of patch connectivity decreases community recovery, regardless of patch location in the river network, dispersal mode, or drying intensity. Local communities of flying organisms maintained higher patch connectivity in drying river networks compared to organisms with strictly aquatic dispersal, which explained the higher recovery capacity of this group from drying events. The general relationship between patch connectivity and community recovery we found can be applied to any spatial network subject to temporal variation of connectivity, thus providing a powerful tool for biodiversity management in dynamic landscapes.


2020 ◽  
Author(s):  
Ashleigh B. Cable ◽  
Joy M. O’Keefe ◽  
Jill L. Deppe ◽  
Tara C. Hohoff ◽  
Steven J. Taylor ◽  
...  

Abstract Context Conservation for the Indiana bat (Myotis sodalis), a federally endangered species in the United States of America, is typically focused on local maternity sites; however, the species is a regional migrant, interacting with the environment at multiple spatial scales. Hierarchical levels of management may be necessary, but we have limited knowledge of landscape-level ecology, distribution, and connectivity of suitable areas in complex landscapes. Objectives We sought to (1) identify factors influencing M. sodalis maternity colony distribution in a mosaic landscape, (2) map suitable maternity habitat, and (3) quantify connectivity importance of patches to direct conservation action. Methods Using 3 decades of occurrence data, we tested a priori, hypothesis-driven habitat suitability models. We mapped suitable areas and quantified connectivity importance of habitat patches with probabilistic habitat availability metrics. Results Factors improving landscape-scale suitability included limited agriculture, more forest cover, forest edge, proximity to medium-sized water bodies, lower elevations, and limited urban development. Areas closer to hibernacula and rivers were suitable. Binary maps showed that 30% of the study area was suitable for M. sodalis and 29% was important for connectivity. Most suitable patches were important for intra-patch connectivity and far fewer contributed to inter-patch connectivity. Conclusions While simple models may be effective for small, homogenous landscapes, complex models are needed to explain habitat suitability in large, mixed landscapes. Suitability modeling identified factors that made sites attractive as maternity areas. Connectivity analysis improved our understanding of important areas for bats and prioritized areas to target for restoration.


2019 ◽  
Vol 22 (2) ◽  
pp. 694-704
Author(s):  
Margarita Petrenko ◽  
Shmuel P. Friedman ◽  
Ronen Fluss ◽  
Zohar Pasternak ◽  
Amit Huppert ◽  
...  

2019 ◽  
Vol 34 (10) ◽  
pp. 2261-2278 ◽  
Author(s):  
Ariel G. Spanowicz ◽  
Jochen A. G. Jaeger

2019 ◽  
Author(s):  
Fabien Laroche ◽  
Manon Balbi ◽  
Théophile Grébert ◽  
Franck Jabot ◽  
Frédéric Archaux

AbstractThe Theory of Island Biogeography (TIB) promoted the idea that species richness within sites depends on site connectivity, i.e. its connection with surrounding potential sources of immigrants. TIB has been extended to a wide array of fragmented ecosystems, beyond archipelagoes, surfing on the analogy between habitat patches and islands and on the patch-matrix framework. However, patch connectivity often little contributes to explaining species richness in empirical studies. Before interpreting this trend as questioning the broad applicability of TIB principles, one first needs a clear identification of methods and contexts where strong effects of patch structural connectivity are likely to occur. Here, we use spatially explicit simulations of neutral metacommunities to show that patch connectivity effect on local species richness is maximized under a set of specific conditions: (i) patch delineation should be fine enough to ensure that no dispersal limitation occurs within patches, (ii) patch connectivity indices should be scaled according to target organisms’ dispersal distance and (iii) the habitat amount around sampled sites (within a distance adapted to organisms’ dispersal) should be highly variable. When those three criteria are met, the absence of an effect of connectivity on species richness should be interpreted as contradicting TIB hypotheses


Sign in / Sign up

Export Citation Format

Share Document