Theoretical Ecology
Latest Publications


TOTAL DOCUMENTS

517
(FIVE YEARS 117)

H-INDEX

34
(FIVE YEARS 4)

Published By Springer-Verlag

1874-1746, 1874-1738

Author(s):  
Mozzamil Mohammed ◽  
Bernd Blasius ◽  
Alexey Ryabov

AbstractThe dynamics of trait-based metacommunities have attracted much attention, but not much is known about how dispersal and spatial environmental variability mutually interact with each other to drive coexistence patterns and diversity. Here, we present a spatially explicit model of competition for two essential resources in a metacommunity on a one-dimensional environmental gradient. We find that both the strength of dispersal and the range of spatial environmental variability affect coexistence patterns, spatial structure, trait distribution, and local and regional diversity. Without dispersal, species are sorted according to their optimal growth conditions on the gradient. With the onset of dispersal, source-sink effects are initiated, which increases the effects of environmental filtering and interspecific competition and generates trait lumping, so that only a few species from an environment-defined trait range can survive. Interestingly, for very large dispersal rates, species distributions become spatially homogeneous, but nevertheless two species at the extreme ends of the trade-off curve can coexist for large environmental variability. Local species richness follows a classic hump-shaped dependence on dispersal rate, while local and regional diversity exhibit a pronounced peak for intermediate values of the environmental variability. Our findings provide important insights into the factors that shape the structure of trait-based metacommunities.


Author(s):  
Anna Vanselow ◽  
Lukas Halekotte ◽  
Ulrike Feudel

AbstractThe transformation of ecosystems proceeds at unprecedented rates. Recent studies suggest that high rates of environmental change can cause rate-induced tipping. In ecological models, the associated rate-induced critical transition manifests during transient dynamics in which populations drop to dangerously low densities. In this work, we study how indirect evolutionary rescue—due to the rapid evolution of a predator’s trait—can save a prey population from the rate-induced collapse. Therefore, we explicitly include the time-dependent dynamics of environmental change and evolutionary adaptation in an eco-evolutionary system. We then examine how fast the evolutionary adaptation needs to be to counteract the response to environmental degradation and express this relationship by means of a critical rate. Based on this critical rate, we conclude that indirect evolutionary rescue is more probable if the predator population possesses a high genetic variation and, simultaneously, the environmental change is slow. Hence, our results strongly emphasize that the maintenance of biodiversity requires a deceleration of the anthropogenic degradation of natural habitats.


Author(s):  
Karen C. Abbott ◽  
Kim Cuddington ◽  
Alan Hastings

Author(s):  
William Godsoe ◽  
Katherine E. Eisen ◽  
Daniel Stanton ◽  
Katherine M. Sirianni
Keyword(s):  

Author(s):  
Corentin Clerc ◽  
Olivier Aumont ◽  
Laurent Bopp

AbstractMesozooplankton play a key role in marine ecosystems as they modulate the transfer of energy from phytoplankton to large marine organisms. In addition, they directly influence the oceanic cycles of carbon and nutrients through vertical migrations, fecal pellet production, respiration, and excretion. Mesozooplankton are mainly made up of metazoans, which undergo important size changes during their life cycle, resulting in significant variations in metabolic rates. However, most marine biogeochemical models represent mesozooplankton as protists-like organisms. Here, we study the potential caveats of this simplistic representation by using a chemostat-like zero-dimensional model with four different Nutrient-Phytoplankton-Zooplankton configurations in which the description of mesozooplankton ranges from protist-type organisms to using a size-based formulation including explicit reproduction and ontogenetic growth. We show that the size-based formulation strongly impacts mesozooplankton. First, it generates a delay of a few months in the response to an increase in food availability. Second, the increase in mesozooplankton biomass displays much larger temporal variations, in the form of successive cohorts, because of the dependency of the ingestion rate to body size. However, the size-based formulation does not affect smaller plankton or nutrient concentrations. A proper assessment of these top-down effects would require implementing our size-resolved approach in a 3-dimensional biogeochemical model. Furthermore, the bottom-up effects on higher trophic levels resulting from the significant changes in the temporal dynamics of mesozooplankton could be estimated in an end-to-end model coupling low and high trophic levels.


Author(s):  
J. R. Reimer ◽  
J. Arroyo-Esquivel ◽  
J. Jiang ◽  
H. R. Scharf ◽  
E. M. Wolkovich ◽  
...  
Keyword(s):  

Author(s):  
Peter C. Jentsch ◽  
Chris T. Bauch ◽  
Madhur Anand

AbstractBark beetle outbreaks and forest fires have imposed severe ecological damage and caused billions of dollars in lost resources in recent decades. The impact of such combined disturbances is projected to become more severe, especially as climate change takes its toll on forest ecosystems in the coming years. Here, we investigate the impact of multiple disturbances in a demographically heterogeneous tree population, using an age-structured difference equation model of bark beetle outbreaks and forest fires. We identify two dynamical regimes for beetle and fire dynamics. The model predicts that fire helps dampen beetle outbreaks not only by removing host trees but also by altering the demographic structure of forest stands. We show that a stand thinning protocol, which reduces the population size of the largest few juvenile classes by a small percentage, is able to significantly reduce beetle-induced tree mortality. Our research demonstrates one approach to capturing compound disturbances in a mathematical model.


Author(s):  
Poppy M. Jeffries ◽  
Samantha C. Patrick ◽  
Jonathan R. Potts

AbstractMany animal populations include a diversity of personalities, and these personalities are often linked to foraging strategy. However, it is not always clear why populations should evolve to have this diversity. Indeed, optimal foraging theory typically seeks out a single optimal strategy for individuals in a population. So why do we, in fact, see a variety of strategies existing in a single population? Here, we aim to provide insight into this conundrum by modelling the particular case of foraging seabirds, that forage on patchy prey. These seabirds have only partial knowledge of their environment: they do not know exactly where the next patch will emerge, but they may have some understanding of which locations are more likely to lead to patch emergence than others. Many existing optimal foraging studies assume either complete knowledge (e.g. Marginal Value Theorem) or no knowledge (e.g. Lévy Flight Hypothesis), but here we construct a new modelling approach which incorporates partial knowledge. In our model, different foraging strategies are favoured by different birds along the bold-shy personality continuum, so we can assess the optimality of a personality type. We show that it is optimal to be shy (resp. bold) when living in a population of bold (resp. shy) birds. This observation gives a plausible mechanism behind the emergence of diverse personalities. We also show that environmental degradation is likely to favour shyer birds and cause a decrease in diversity of personality over time.


Sign in / Sign up

Export Citation Format

Share Document