information flow control
Recently Published Documents


TOTAL DOCUMENTS

254
(FIVE YEARS 50)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Zhanhui Yuan ◽  
Wenfa Li ◽  
Zhi Yang ◽  
Lei Sun ◽  
Xuehui Du ◽  
...  

Mobile operating systems such as Android are facing serious security risk. First, they have a large number of users and store a large number of users’ private data, which have become major targets of network attack; second, their openness leads to high security risks; third, their coarse-grained static permission control mechanism leads to a large number of privacy leaks. Recent decentralized information flow control (DIFC) operating systems such as Asbestos, HiStar, and Flume dynamically adjust the label of each process. Asbestos contains inherent covert channels due to this implicit label adjustment. The others close these covert channels through the use of explicit label change, but this impedes communication and increases performance overhead. We present an enhanced implicit label change model (EILCM) for mobile operating systems that can close the known covert channel in these models with implicit label change and supports dynamic constraints on tags for separation of duty. We also formally analyze the reasons why EILCM can close the known covert channels and prove that abstract EILCM systems have the security property of noninterference with declassification by virtue of the model checker tool FDR. We also prove that the problem of EILCM policy verification is NP-complete and propose a backtrack-based search algorithm to solve the problem. Experiments are presented to show that the algorithm is effective.


2021 ◽  
Vol 13 (6) ◽  
pp. 146
Author(s):  
Somdip Dey ◽  
Amit Kumar Singh ◽  
Klaus McDonald-Maier

Side-channel attacks remain a challenge to information flow control and security in mobile edge devices till this date. One such important security flaw could be exploited through temperature side-channel attacks, where heat dissipation and propagation from the processing cores are observed over time in order to deduce security flaws. In this paper, we study how computer vision-based convolutional neural networks (CNNs) could be used to exploit temperature (thermal) side-channel attack on different Linux governors in mobile edge device utilizing multi-processor system-on-chip (MPSoC). We also designed a power- and memory-efficient CNN model that is capable of performing thermal side-channel attack on the MPSoC and can be used by industry practitioners and academics as a benchmark to design methodologies to secure against such an attack in MPSoC.


Sign in / Sign up

Export Citation Format

Share Document