scholarly journals ∆9-Tetrahydrocannabinol Self-Administration Induces Cell-Type Specific Adaptations and cFOS Expression in the Nucleus Accumbens Core

Author(s):  
Daniela Neuhofer ◽  
Constanza Garcia-Keller ◽  
Madeline Hohmeister ◽  
Kailyn Seidling ◽  
Lauren Beloate ◽  
...  

Abstract Given that 30% of chronic cannabis users develop cannabis use disorder (CUD), it is critical to identify neuroadaptations that contribute to this disease. The nucleus accumbens core (NAcore) is important for drug seeking and ~ 90% of all NAcore neurons are divided into D1- and D2-medium spiny neurons (MSNs) that serve opposing roles in drug seeking. Drugs of abuse induce D1- and D2-MSN specific adaptations but whether ∆9-tetrahydrocannabinol (THC) use initiates similar neuroadaptations is unknown. D1- and D2-Cre transgenic rats were transfected with Cre-dependent reporters and trained to self-administer THC + cannabidiol (THC + CBD). After extinction training dendritic spine morphology, glutamate transmission, CB1R function and cFOS expression were quantified. We found that extinction from THC + CBD induced a loss of large spine heads in D1- but not D2-MSNs and a commensurate reduction in glutamate synaptic transmission. Also, CB1R function was impaired on glutamatergic synapses onto D1-MSNs and this was paralleled by an augmented capacity to potentiate glutamate transmission in D1-MSNs. CB1R function and glutamate synaptic transmission on D2-MSN synapses were unaffected by THC + CBD use. Using cFOS expression as an activity marker, we found that D1-MSNs activity remained unchanged after extinction from THC + CBD but significantly increased after 60 minutes cue-induced drug seeking. Surprisingly, the percentage of D2-MSNs expressing cFOS decreased after extinction from THC + CBD and this decrease was restored by drug cues. Thus, glutamatergic adaptations in D1-MSNs partially predict activity changes and pose modulating CB1R function that is down-regulated selectively at D1-MSN synapses as a potential treatment strategy for CUD.

2016 ◽  
Vol 233 (8) ◽  
pp. 1435-1443 ◽  
Author(s):  
Cody A. Siciliano ◽  
Erin S. Calipari ◽  
Jordan T. Yorgason ◽  
David M. Lovinger ◽  
Yolanda Mateo ◽  
...  

2021 ◽  
Author(s):  
Amy Chan ◽  
Alexis Willard ◽  
Sarah Mulloy ◽  
Noor Ibrahim ◽  
Allegra Sciaccotta ◽  
...  

This study investigated the potential therapeutic effects of the FDA-approved drug metformin on cue-induced reinstatement of cocaine seeking. Metformin (dimethyl-biguanide) is a first-line treatment for type II diabetes that, among other mechanisms, is involved in the activation of adenosine monophosphate activated protein kinase (AMPK). Cocaine self-administration and extinction is associated with decreased levels of phosphorylated AMPK within the nucleus accumbens core (NAcore). Previously it was shown that increasing AMPK activity in the NAcore decreased cue-induced reinstatement of cocaine seeking. Decreasing AMPK activity produced the opposite effect. The goal of the present study was to determine if metformin in the NAcore reduces cue-induced cocaine seeking in adult male and female Sprague Dawley rats. Rats were trained to self-administer cocaine followed by extinction prior to cue-induced reinstatement trials. Metformin microinjected in the NAcore attenuated cue-induced reinstatement in male and female rats. Importantly, metformin's effects on cocaine seeking were not due to a general depression of spontaneous locomotor activity. In female rats, metformin's effects did generalize to a reduction in cue-induced reinstatement of sucrose seeking. These data support a potential role for metformin as a pharmacotherapy for cocaine use disorder, but warrant caution given the potential for metformin's effects to generalize to a natural reward in female rats.


2018 ◽  
Vol 12 ◽  
Author(s):  
Zhao Li ◽  
Zhilong Chen ◽  
Guoqing Fan ◽  
Anan Li ◽  
Jing Yuan ◽  
...  

Neuroscience ◽  
2019 ◽  
Vol 406 ◽  
pp. 528-541 ◽  
Author(s):  
B.M. Siemsen ◽  
C.M. Reichel ◽  
K.C. Leong ◽  
C. Garcia-Keller ◽  
C.D. Gipson ◽  
...  

2000 ◽  
Vol 153 (4) ◽  
pp. 455-463 ◽  
Author(s):  
Helen L. Alderson ◽  
John A. Parkinson ◽  
Trevor W. Robbins ◽  
Barry J. Everitt

Sign in / Sign up

Export Citation Format

Share Document