evolutionary stasis
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 3)

H-INDEX

21
(FIVE YEARS 0)

Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1084
Author(s):  
Danon Clemes Cardoso ◽  
Maykon Passos Cristiano

Ants are an important insect group that exhibits considerable diversity in chromosome numbers. Some species show only one chromosome, as in the males of the Australian bulldog ant Myrmecia croslandi, while some have as many as 60 chromosomes, as in the males of the giant Neotropical ant Dinoponera lucida. Fungus-growing ants are a diverse group in the Neotropical ant fauna, engaged in a symbiotic relationship with a basidiomycete fungus, and are widely distributed from Nearctic to Neotropical regions. Despite their importance, new chromosome counts are scarcely reported, and the marked variation in chromosome number across species has been poorly studied under phylogenetic and genome evolutionary contexts. Here, we present the results of the cytogenetic examination of fungus-farming ants and compile the cytogenetic characteristics and genome size of the species studied to date to draw insights regarding the evolutionary paths of karyotype changes and diversity. These data are coupled with a fossil-calibrated phylogenetic tree to discuss the mode and tempo of chromosomal shifting, considering whether there is an upper limit for chromosome number and genome size in ants, using fungus-farming ants as a model study. We recognize that karyotypes are generally quite variable across fungus-farming ant phylogeny, mostly between genera, and are more numerically conservative within genera. A low chromosome number, between 10 and 12 chromosomes, seems to present a notable long-term evolutionary stasis (intermediate evolutionary stasis) in fungus-farming ants. All the genome size values were inside a limited spectrum below 1 pg. Eventual departures in genome size occurred with regard to the mean of 0.38 pg, indicating that there is a genome, and likely a chromosome, number upper limit.





2021 ◽  
Vol 36 (2) ◽  
Author(s):  
Scott Lidgard ◽  
Alan C. Love

AbstractDespite the iconic roles of coelacanths, cycads, tadpole shrimps, and tuataras as taxa that demonstrate a pattern of morphological stability over geological time, their status as living fossils is contested. We responded to these controversies with a recommendation to rethink the function of the living fossil concept (Lidgard and Love in Bioscience 68:760–770, 2018). Concepts in science do useful work beyond categorizing particular items and we argued that the diverse and sometimes conflicting criteria associated with categorizing items as living fossils represent a complex problem space associated with answering a range of questions related to prolonged evolutionary stasis. Turner (Biol Philos 34:23, 2019) defends the living concept against a variety of recent skeptics, but his criticism of our approach relies on a misreading of our main argument. This misreading is instructive because it brings into view the value of three central themes for rethinking the living fossil concept—the function of concepts in biology outside of categorization, the methodological importance of distinguishing parts and wholes in conceptualizing evolutionary phenomena, and articulating diverse explanatory goals associated with these phenomena.



eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Rylan Shearn ◽  
Alison E Wright ◽  
Sylvain Mousset ◽  
Corinne Régis ◽  
Simon Penel ◽  
...  

Sex chromosomes are typically comprised of a non-recombining region and a recombining pseudoautosomal region. Accurately quantifying the relative size of these regions is critical for sex-chromosome biology both from a functional and evolutionary perspective. The evolution of the pseudoautosomal boundary (PAB) is well documented in haplorrhines (apes and monkeys) but not in strepsirrhines (lemurs and lorises). Here, we studied the PAB of seven species representing the main strepsirrhine lineages by sequencing a male and a female genome in each species and using sex differences in coverage to identify the PAB. We found that during primate evolution, the PAB has remained unchanged in strepsirrhines whereas several recombination suppression events moved the PAB and shortened the pseudoautosomal region in haplorrhines. Strepsirrhines are well known to have much lower sexual dimorphism than haplorrhines. We suggest that mutations with antagonistic effects between males and females have driven recombination suppression and PAB evolution in haplorrhines



Palaeontology ◽  
2020 ◽  
Vol 63 (5) ◽  
pp. 791-806
Author(s):  
James D. Witts ◽  
Neil H. Landman ◽  
Melanie J. Hopkins ◽  
Corinne E. Myers


2020 ◽  
Vol 26 (2) ◽  
pp. 196-216
Author(s):  
Tian-tong Luo ◽  
Jian-long Zhu ◽  
Trond Reitan ◽  
Gabriel Yedid

Among the major unresolved questions in ecosystem evolution are whether coevolving multispecies communities are dominated more by biotic or by abiotic factors, and whether evolutionary stasis affects performance as well as ecological profile; these issues remain difficult to address experimentally. Digital evolution, a computer-based instantiation of Darwinian evolution in which short self-replicating computer programs compete, mutate, and evolve, is an excellent platform for investigating such topics in a rigorous experimental manner. We evolved model communities with ecological interdependence among community members, which were subjected to two principal types of mass extinction: a pulse extinction that killed randomly, and a selective press extinction involving an alteration of the abiotic environment to which the communities had to adapt. These treatments were applied at two different strengths (Strong and Weak), along with unperturbed Control experiments. We performed several kinds of competition experiments using simplified versions of these communities to see whether long-term stability that was implied previously by ecological and phylogenetic metrics was also reflected in performance, namely, whether fitness was static over long periods of time. Results from Control and Weak treatment communities revealed almost completely transitive evolution, while Strong treatment communities showed higher incidences of temporal intransitivity, with pre-treatment ecotypes often able to displace some of their post-recovery successors. However, pre-treatment carryovers more often had lower fitness in mixed communities than in their own fully native conditions. Replacement and invasion experiments pitting single ecotypes against pre-treatment reference communities showed that many of the invading ecotypes could measurably alter the fitnesses of one or more residents, usually with depressive effects, and that the strength of these effects increased over time even in the most stable communities. However, invaders taken from Strong treatment communities often had little or no effect on resident performance. While we detected periods of time when the fitness of a particular evolving ecotype remained static, this stasis was not permanent and never affected an entire community at once. Our results lend support to the fitness-deterioration interpretation of the Red Queen hypothesis, and highlight community context dependence in determining fitness, the shaping of communities by both biotic factors and abiotic forcing, and the illusory nature of evolutionary stasis. Our results also demonstrate the potential of digital evolution studies to illuminate many aspects of evolution in interacting multispecies communities.



2020 ◽  
Vol 99 ◽  
pp. 102517 ◽  
Author(s):  
Daniel Lima ◽  
Marcos Tavares ◽  
Ricardo T. Lopes ◽  
Olga M. Oliveira de Araújo ◽  
Orangel Aguilera


Sign in / Sign up

Export Citation Format

Share Document