foam modeling
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Amit Katiyar ◽  
Troy Knight ◽  
Adam Grzesiak ◽  
Pete Rozowski ◽  
Quoc Nguyen

Abstract Several gas Enhanced Oil Recovery (EOR) pilots enhanced with aqueous-foam based conformance solutions have been implemented in the last 30 years. While these pilots were technically successful, there were economic challenges limiting their commercial viability. Many of these pilots were implemented with water-soluble foaming surfactants that can get adversely affected by near wellbore gas-water gravity segregation and adsorption loss up to 90% of the injected surfactant. Novel, gas-soluble surfactants can be injected with the gas phase where these surfactants are carried with the gas to thief zones faster and deeper with relatively lower adsorption to the rock surface. However, the conventional foam modeling approach relied only on the surfactant concentration in brine to determine foam strength, which adversely predicted the performance of gas soluble surfactants. With proven laboratory evaluations and multiple successful field implementations, the advantages of low adsorbing and gas soluble surfactants cannot be ignored. In this paper, the advantages of surfactant partitioning to the gas phase are confirmed by correcting the conventional foam modeling approach while simulating 1D transport of CO2-foam displacing brine in porous media. An empirical foam model was developed from the lab scale core flooding work of CO2foam transport through porous media using a novel gas-soluble foaming surfactant. While investigating the performance of gas soluble surfactants, global surfactant concentration was used to determine foam strength as the surfactant can transport to the gas-water interface from both the phases. Lab experiments and simulations with an improved foam modeling approach confirmed that a higher gas phase partitioning surfactant generated robust foam and deeper foam propagation while injecting surfactant with CO2in a water saturated core. In addition, comparing three partition coefficient scenarios around 1 on mass basis, the higher gas phase partitioning surfactant showed the larger delay in gas breakthrough. Overall, the simulation results with our better modeling approach do support the advantages of the higher gas phase surfactant partitioning in deeper foam transport and conformance enhancement for the gas-EOR technology.


2020 ◽  
Vol 29 (5) ◽  
pp. 3363-3384 ◽  
Author(s):  
Ali Saeibehrouzi ◽  
Maryam Khosravi ◽  
Behzad Rostami

Author(s):  
Hamed Hematpour ◽  
Syed Mohammad Mahmood ◽  
Saeed Akbari ◽  
Abdolmohsen Shabib Asl

SPE Journal ◽  
2016 ◽  
Vol 21 (05) ◽  
pp. 1669-1687 ◽  
Author(s):  
W.. Lee ◽  
S.. Lee ◽  
M.. Izadi ◽  
S. I. Kam

Summary Numerous laboratory and field tests reveal that foam can effectively control gas mobility and improve sweep efficiency, if correctly designed. It is believed that there is a significant gap between small laboratory-scale experiments and large field-scale tests because of two main reasons: (1) Typical laboratory flow tests are conducted in linear systems, whereas field-scale foam enhanced-oil-recovery (EOR) processes are performed in radial (or spherical partly) systems and (2) through the complicated in-situ lamella creation/coalescence mechanisms and non-Newtonian behavior, foam rheology depends on the geometry and dimensionality. As a result, it is still an open question as to how to translate laboratory-measured data to field-scale treatments. Motivated by earlier studies of Kovscek et al. (1994, 1997), this study investigates how such dimensionality-dependent foam rheological properties are affected by different injection conditions on small and large scales, with a mechanistic foam-modeling technique. Complex foam-flow characteristics such as three foam states (weak-foam, strong-foam, and intermediate states) and two steady-state strong-foam regimes (high-quality regime and low-quality regime) lie in the heart of this analysis. The calculation results from small radial and spherical systems showed that (1) for strong foams in the low-quality regime injected, foam mobility decreased [or mobility reduction factor (MRF) increased] significantly with distance showing a good sweep efficiency; (2) for strong foams in the high-quality regime, the situation became more complicated—near the well, foam mobility decreased, but away from the well, foam mobility increased with distance, which eventually gave a relatively low sweep efficiency; and (3) for weak foams injected, foam mobility increased with distance showing a poor sweep efficiency. The results implied that the use of a fixed value of MRF, which is a common practice in field-scale reservoir simulations, might lead to a significant error. When the method was applied to a larger scale, it was shown that strong foams could propagate deeper into the reservoir at higher injection rate, higher injection pressure, and at lower injection foam quality. Foam-propagation distance was very sensitive to these injection conditions for strong foams in the high-quality regime, but much less sensitive for strong foams in the low-quality regime.


2015 ◽  
Vol 72 ◽  
pp. 53-64 ◽  
Author(s):  
Amir H. Roohi ◽  
H. Moslemi Naeini ◽  
M. Hoseinpour Gollo ◽  
M. Soltanpour ◽  
M. Abbaszadeh

SPE Journal ◽  
2015 ◽  
Vol 20 (03) ◽  
pp. 453-470 ◽  
Author(s):  
Kun Ma ◽  
Guangwei Ren ◽  
Khalid Mateen ◽  
Danielle Morel ◽  
Philippe Cordelier

Summary Foam, a dispersion of gas in liquid, has been investigated as a tool for gas-mobility and conformance control in porous media for a variety of applications since the late 1950s. These applications include enhanced oil recovery, matrix-acidization treatments, gas-leakage prevention, as well as contaminated-aquifer remediation. To understand the complex physics of foam in porous media and to implement foam processes in a more-controllable way, various foam-modeling techniques were developed in the past 3 decades. This paper reviews modeling approaches obtained from different publications for describing foam flow through porous media. Specifically, we tabulate models on the basis of their respective characteristics, including implicit-texture as well as mechanistic population-balance foam models. In various population-balance models, how foam texture is obtained and how gas mobility is altered as a function of foam texture, among other variables, are presented and compared. It is generally understood that both the gas relative permeability and viscosity vary in the reduction of gas mobility through foam generation in porous media. However, because the two parameters appear together in the Darcy equation, different approaches were taken to alter the mobility in the various models: only reduction of gas relative permeability, increasing of effective gas viscosity, or a combination of both. The applicability and limitations of each approach are discussed. How various foam-generation mechanisms play a role in the foam-generation function in mechanistic models is also discussed in this review, which is indispensable to reconcile the findings from different publications. In addition, other foam-modeling methods, such as the approaches that use fractional-flow theory and those that use percolation theory, are also reviewed in this work. Several challenges for foam modeling, including model selection and enhancement, fitting parameters to data, modeling oil effect on foam behavior, and scaling up of foam models, are also discussed at the end of this paper.


Sign in / Sign up

Export Citation Format

Share Document