Dimensionality-Dependent Foam Rheological Properties: How To Go From Linear to Radial Geometry for Foam Modeling and Simulation

SPE Journal ◽  
2016 ◽  
Vol 21 (05) ◽  
pp. 1669-1687 ◽  
Author(s):  
W.. Lee ◽  
S.. Lee ◽  
M.. Izadi ◽  
S. I. Kam

Summary Numerous laboratory and field tests reveal that foam can effectively control gas mobility and improve sweep efficiency, if correctly designed. It is believed that there is a significant gap between small laboratory-scale experiments and large field-scale tests because of two main reasons: (1) Typical laboratory flow tests are conducted in linear systems, whereas field-scale foam enhanced-oil-recovery (EOR) processes are performed in radial (or spherical partly) systems and (2) through the complicated in-situ lamella creation/coalescence mechanisms and non-Newtonian behavior, foam rheology depends on the geometry and dimensionality. As a result, it is still an open question as to how to translate laboratory-measured data to field-scale treatments. Motivated by earlier studies of Kovscek et al. (1994, 1997), this study investigates how such dimensionality-dependent foam rheological properties are affected by different injection conditions on small and large scales, with a mechanistic foam-modeling technique. Complex foam-flow characteristics such as three foam states (weak-foam, strong-foam, and intermediate states) and two steady-state strong-foam regimes (high-quality regime and low-quality regime) lie in the heart of this analysis. The calculation results from small radial and spherical systems showed that (1) for strong foams in the low-quality regime injected, foam mobility decreased [or mobility reduction factor (MRF) increased] significantly with distance showing a good sweep efficiency; (2) for strong foams in the high-quality regime, the situation became more complicated—near the well, foam mobility decreased, but away from the well, foam mobility increased with distance, which eventually gave a relatively low sweep efficiency; and (3) for weak foams injected, foam mobility increased with distance showing a poor sweep efficiency. The results implied that the use of a fixed value of MRF, which is a common practice in field-scale reservoir simulations, might lead to a significant error. When the method was applied to a larger scale, it was shown that strong foams could propagate deeper into the reservoir at higher injection rate, higher injection pressure, and at lower injection foam quality. Foam-propagation distance was very sensitive to these injection conditions for strong foams in the high-quality regime, but much less sensitive for strong foams in the low-quality regime.


2020 ◽  
Vol 36 (7) ◽  
pp. 789-830 ◽  
Author(s):  
Jinesh Machale ◽  
Subrata Kumar Majumder ◽  
Pallab Ghosh ◽  
Tushar Kanti Sen

AbstractA significant amount of oil (i.e. 60–70%) remains trapped in reservoirs after the conventional primary and secondary methods of oil recovery. Enhanced oil recovery (EOR) methods are therefore necessary to recover the major fraction of unrecovered trapped oil from reservoirs to meet the present-day energy demands. The chemical EOR method is one of the promising methods where various chemical additives, such as alkalis, surfactants, polymer, and the combination of all alkali–surfactant–polymer (ASP) or surfactant–polymer (SP) solutions, are injected into the reservoir to improve the displacement and sweep efficiency. Every oil field has different conditions, which imposes new challenges toward alternative but more effective EOR techniques. Among such attractive alternative additives are polymeric surfactants, natural surfactants, nanoparticles, and self-assembled polymer systems for EOR. In this paper, water-soluble chemical additives such as alkalis, surfactants, polymer, and ASP or SP solution for chemical EOR are highlighted. This review also discusses the concepts and techniques related to the chemical methods of EOR, and highlights the rheological properties of the chemicals involved in the efficiency of EOR methods.



2018 ◽  
Vol 175 ◽  
pp. 01006
Author(s):  
Xu WenBo

For the main polymer flooding oilfield expansion and infill wells three times the area of deployment, the proposed development mode II oil reservoir of polymer flooding and thin and poor combination of three encryption. In this paper, the use of leading edge water monitoring methods and principles of the plane heterogeneity through physical simulation to study the effects of different mining methods II oil and a combination of the three encryption effects of flooding. Studies have shown that, together with the water flooding recovery can be increased by nearly 19 percent, higher than the water poly alternate drive about 4%, the injection pressure is about three types of reservoir 0.3MPa, flat stage water flood sweep efficiency compared with an average of 30.95%. Meanwhile polymer injection can increase oil recovery by 21%, but the limited ability of three types of oil injection, polymer injection pressure during injection 0.22PV up to 0.8MPa, water flooding stage by an average of 30 percent compared to the plane sweep efficiency. The water flooding recovery poly alternately raise only 15%, an average increase of 26.95 percent driven phase plane sweep efficiency than water. Theoretical results of this study may provide a reliable basis for the future development of efficient thin and poor reservoirs.



Fuel ◽  
2019 ◽  
Vol 257 ◽  
pp. 116067 ◽  
Author(s):  
Jinesh Machale ◽  
Subrata Kumar Majumder ◽  
Pallab Ghosh ◽  
Tushar Kanti Sen


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 55-60
Author(s):  
Wenting Dong ◽  
Dong Zhang ◽  
Keliang Wang ◽  
Yue Qiu

AbstractPolymer flooding technology has shown satisfactorily acceptable performance in improving oil recovery from unconsolidated sandstone reservoirs. The adsorption of the polymer in the pore leads to the increase of injection pressure and the decrease of suction index, which affects the effect of polymer flooding. In this article, the water and oil content of polymer blockages, which are taken from Bohai Oilfield, are measured by weighing method. In addition, the synchronous thermal analyzer and Fourier transform infrared spectroscopy (FTIR) are used to evaluate the composition and functional groups of the blockage, respectively. Then the core flooding experiments are also utilized to assess the effect of polymer plugs on reservoir properties and optimize the best degradant formulation. The results of this investigation show that the polymer adsorption in core after polymer flooding is 0.0068 g, which results in a permeability damage rate of 74.8%. The degradation ability of the agent consisting of 1% oxidizer SA-HB and 10% HCl is the best, the viscosity of the system decreases from 501.7 to 468.5 mPa‧s.



e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 61-68
Author(s):  
Dong Zhang ◽  
Jian Guang Wei ◽  
Run Nan Zhou

AbstractActive-polymer attracted increasing interest as an enhancing oil recovery technology in oilfield development owing to the characteristics of polymer and surfactant. Different types of active functional groups, which grafted on the polymer branched chain, have different effects on the oil displacement performance of the active-polymers. In this article, the determination of molecular size and viscosity of active-polymers were characterized by Scatterer and Rheometer to detect the expanded swept volume ability. And the Leica microscope was used to evaluate the emulsifying property of the active-polymers, which confirmed the oil sweep efficiency. Results show that the Type I active-polymer have a greater molecular size and stronger viscosity, which is a profile control system for expanding the swept volume. The emulsification performance of Type III active-polymer is more stable, which is suitable for improving the oil cleaning efficiency. The results obtained in this paper reveal the application prospect of the active-polymer to enhance oil recovery in the development of oilfields.



2021 ◽  
pp. 014459872098020
Author(s):  
Ruizhi Hu ◽  
Shanfa Tang ◽  
Musa Mpelwa ◽  
Zhaowen Jiang ◽  
Shuyun Feng

Although new energy has been widely used in our lives, oil is still one of the main energy sources in the world. After the application of traditional oil recovery methods, there are still a large number of oil layers that have not been exploited, and there is still a need to further increase oil recovery to meet the urgent need for oil in the world economic development. Chemically enhanced oil recovery (CEOR) is considered to be a kind of effective enhanced oil recovery technology, which has achieved good results in the field, but these technologies cannot simultaneously effectively improve oil sweep efficiency, oil washing efficiency, good injectability, and reservoir environment adaptability. Viscoelastic surfactants (VES) have unique micelle structure and aggregation behavior, high efficiency in reducing the interfacial tension of oil and water, and the most important and unique viscoelasticity, etc., which has attracted the attention of academics and field experts and introduced into the technical research of enhanced oil recovery. In this paper, the mechanism and research status of viscoelastic surfactant flooding are discussed in detail and focused, and the results of viscoelastic surfactant flooding experiments under different conditions are summarized. Finally, the problems to be solved by viscoelastic surfactant flooding are introduced, and the countermeasures to solve the problems are put forward. This overview presents extensive information about viscoelastic surfactant flooding used for EOR, and is intended to help researchers and professionals in this field understand the current situation.



Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 319 ◽  
Author(s):  
Bin Huang ◽  
Xiaohui Li ◽  
Cheng Fu ◽  
Ying Wang ◽  
Haoran Cheng

Previous studies showed the difficulty during polymer flooding and the low producing degree for the low permeability layer. To solve the problem, Daqing, the first oil company, puts forward the polymer-separate-layer-injection-technology which separates mass and pressure in a single pipe. This technology mainly increases the control range of injection pressure of fluid by using the annular de-pressure tool, and reasonably distributes the molecular weight of the polymer injected into the thin and poor layers through the shearing of the different-medium-injection-tools. This occurs, in order to take advantage of the shearing thinning property of polymer solution and avoid the energy loss caused by the turbulent flow of polymer solution due to excessive injection rate in different injection tools. Combining rheological property of polymer and local perturbation theory, a rheological model of polymer solution in different-medium-injection-tools is derived and the maximum injection velocity is determined. The ranges of polymer viscosity in different injection tools are mainly determined by the structures of the different injection tools. However, the value of polymer viscosity is mainly determined by the concentration of polymer solution. So, the relation between the molecular weight of polymer and the permeability of layers should be firstly determined, and then the structural parameter combination of the different-medium-injection-tool should be optimized. The results of the study are important for regulating polymer injection parameters in the oilfield which enhances the oil recovery with reduced the cost.



1966 ◽  
Vol 6 (03) ◽  
pp. 217-227 ◽  
Author(s):  
Hubert J. Morel-Seytoux

Abstract The influence of pattern geometry on assisted oil recovery for a particular displacement mechanism is the object of investigation in this paper. The displacement is assumed to be of unit mobility ratio and piston-like. Fluids are assumed incompressible and gravity and capillary effects are neglected. With these assumptions it is possible to calculate by analytical methods the quantities of interest to the reservoir engineer for a great variety of patterns. Specifically, this paper presentsvery briefly, the methods and mathematical derivations required to obtain the results of engineering concern, andtypical results in the form of graphs or formulae that can be used readily without prior study of the methods. Results of this work provide checks for solutions obtained from programmed numerical techniques. They also reveal the effect of pattern geometry and, even though the assumptions of piston-like displacement and of unit mobility ratio are restrictive, they can nevertheless be used for rather crude but quick, cheap estimates. These estimates can be refined to account for non-unit mobility ratio and two-phase flow by correlating analytical results in the case M=1 and the numerical results for non-Piston, non-unit mobility ratio displacements. In an earlier paper1 it was also shown that from the knowledge of closed form solutions for unit mobility ratio, quantities called "scale factors" could be readily calculated, increasing considerably the flexibility of the numerical techniques. Many new closed form solutions are given in this paper. INTRODUCTION BACKGROUND Pattern geometry is a major factor in making water-flood recovery predictions. For this reason many numerical schemes have been devised to predict oil recovery in either regular patterns or arbitrary configurations. The numerical solutions, based on the method of finite difference approximation, are subject to errors often difficult to evaluate. An estimate of the error is possible by comparison with exact solutions. To provide a variety of checks on numerical solutions, a thorough study of the unit mobility ratio displacement process was undertaken. To calculate quantities of interest to the reservoir engineer (oil recovery, sweep efficiency, etc.), it is necessary to first know the pressure distribution in the pattern. Then analytical procedures are used to calculate, in order of increasing difficulty: injectivity, breakthrough areal sweep efficiency, normalized oil recovery and water-oil ratio as a function of normalized PV injected. BACKGROUND Pattern geometry is a major factor in making water-flood recovery predictions. For this reason many numerical schemes have been devised to predict oil recovery in either regular patterns or arbitrary configurations. The numerical solutions, based on the method of finite difference approximation, are subject to errors often difficult to evaluate. An estimate of the error is possible by comparison with exact solutions. To provide a variety of checks on numerical solutions, a thorough study of the unit mobility ratio displacement process was undertaken. To calculate quantities of interest to the reservoir engineer (oil recovery, sweep efficiency, etc.), it is necessary to first know the pressure distribution in the pattern. Then analytical procedures are used to calculate, in order of increasing difficulty: injectivity, breakthrough areal sweep efficiency, normalized oil recovery and water-oil ratio as a function of normalized PV injected.



2017 ◽  
Vol 26 (3) ◽  
pp. 779-785 ◽  
Author(s):  
A.N. El-hoshoudy ◽  
S.E.M. Desouky ◽  
A.M. Al-Sabagh ◽  
M.A. Betiha ◽  
El-kady M.Y. ◽  
...  


2014 ◽  
Vol 695 ◽  
pp. 499-502 ◽  
Author(s):  
Mohamad Faizul Mat Ali ◽  
Radzuan Junin ◽  
Nor Hidayah Md Aziz ◽  
Adibah Salleh

Malaysia oilfield especially in Malay basin has currently show sign of maturity phase which involving high water-cut and also pressure declining. In recent event, Malaysia through Petroliam Nasional Berhad (PETRONAS) will be first implemented an enhanced oil recovery (EOR) project at the Tapis oilfield and is scheduled to start operations in 2014. In this project, techniques utilizing water-alternating-gas (WAG) injection which is a type of gas flooding method in EOR are expected to improve oil recovery to the field. However, application of gas flooding in EOR process has a few flaws which including poor sweep efficiency due to high mobility ratio of oil and gas that promotes an early breakthrough. Therefore, a concept of carbonated water injection (CWI) in which utilizing CO2, has ability to dissolve in water prior to injection was applied. This study is carried out to assess the suitability of CWI to be implemented in improving oil recovery in simulated sandstone reservoir. A series of displacement test to investigate the range of recovery improvement at different CO2 concentrations was carried out with different recovery mode stages. Wettability alteration properties of CWI also become one of the focuses of the study. The outcome of this study has shown a promising result in recovered residual oil by alternating the wettability characteristic of porous media becomes more water-wet.



Sign in / Sign up

Export Citation Format

Share Document