calculated mass loss
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 3)

H-INDEX

0
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Nabil Al-Bayati

The objectives of this research are to compare the effect of corrosion on shear behavior in particular, and the overall structural response in both NC and SCC beams in general. Twenty reinforced concrete beams were used, with ten specimens cast using normal concrete (NC), and the other ten were cast using self-consolidating concrete (SCC). The dimensions for each beam were 150mm x 220mm x 1400mm. Using accelerated corrosion through the application of a constant current of one ampere, four stages of corrosion were established at 5%, 10%, and 20% of mass loss. Simply supported beams were loaded with two concentrated loads, and a four-point loading test was applied to the reinforced concrete (RC) beams. If (a) is the distance from the concentrated load to the reaction, and (d) is the distance from the center of the tensile flexural rebars to the top of the concrete beam, then a/d=2.5 was applied to assure the highest probability of shear failure mode. The data collected from load cell, LVDTs, corrosion crack patterns and loading cracks patterns were used to study the effects of multiple stages of corrosion on the shear behaviour of reinforced NC and SCC concrete beams. The corroded rebars were then retrieved and cleaned to compare the calculated mass loss with real mass loss. The results showed high correlation between the calculated mass loss (according to Faraday law) and real mass loss. The accelerated corrosion resulted in a corrosion crack pattern, which was documented and analyzed. In this research, the use of NC and SCC showed minor influences on failure mode, while the different states of corrosion showed a higher degree of influence on failure mode and the structural capacity of beams made from both types of concrete. The apparent changes in failure mode were associated with the increased corrosion stage.


2021 ◽  
Author(s):  
Nabil Al-Bayati

The objectives of this research are to compare the effect of corrosion on shear behavior in particular, and the overall structural response in both NC and SCC beams in general. Twenty reinforced concrete beams were used, with ten specimens cast using normal concrete (NC), and the other ten were cast using self-consolidating concrete (SCC). The dimensions for each beam were 150mm x 220mm x 1400mm. Using accelerated corrosion through the application of a constant current of one ampere, four stages of corrosion were established at 5%, 10%, and 20% of mass loss. Simply supported beams were loaded with two concentrated loads, and a four-point loading test was applied to the reinforced concrete (RC) beams. If (a) is the distance from the concentrated load to the reaction, and (d) is the distance from the center of the tensile flexural rebars to the top of the concrete beam, then a/d=2.5 was applied to assure the highest probability of shear failure mode. The data collected from load cell, LVDTs, corrosion crack patterns and loading cracks patterns were used to study the effects of multiple stages of corrosion on the shear behaviour of reinforced NC and SCC concrete beams. The corroded rebars were then retrieved and cleaned to compare the calculated mass loss with real mass loss. The results showed high correlation between the calculated mass loss (according to Faraday law) and real mass loss. The accelerated corrosion resulted in a corrosion crack pattern, which was documented and analyzed. In this research, the use of NC and SCC showed minor influences on failure mode, while the different states of corrosion showed a higher degree of influence on failure mode and the structural capacity of beams made from both types of concrete. The apparent changes in failure mode were associated with the increased corrosion stage.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 671
Author(s):  
Ana Brglez ◽  
Barbara Piškur ◽  
Miha Humar ◽  
Jožica Gričar ◽  
Nikica Ogris

Eutypella parasitica R.W. Davidson & R.C. Lorenz is the causative agent of Eutypella canker of maple, a destructive disease of maples in Europe and North America. The fungus E. parasitica is known to cause wood stain and decay. However, it is not known how effectively it decomposes the wood of the most widespread maple species in Europe. Wood samples of Acer pseudoplatanus L., A. platanoides L., and A. campestre L. were exposed to four isolates of E. parasitica and nine other fungal species for comparison, according to the modified EN 113 standard. After 15 weeks of incubation, mass loss and microscopical analysis of samples showed evidence of colonization and different wood decay potentials among fungal species. A highly significant positive correlation was found between mass loss and moisture content for all fungal species. Similarly, the measured cell wall thickness correlated well with the calculated mass loss of the samples. On average, the fungal species caused the lowest mass loss in A. pseudoplatanus (10.0%) and the highest in A. campestre (12.6%) samples. Among the samples exposed to E. parasitica isolates, the highest mass loss was recorded in A. pseudoplatanus (6.6%). Statistical analysis showed significant differences in mass loss and moisture content between different E. parasitica isolates. Based on the results of staining, we discuss the type of decay caused by E. parasitica. Although E. parasitica isolates caused smaller mass loss of samples compared to other more effective decay species, we should not disregard its capability of degrading maple wood. Because E. parasitica usually infects the lower portion of the trunk, which is the largest and most valuable part of the tree, any damage can cause significant economic and resource loss.


Sign in / Sign up

Export Citation Format

Share Document