nasal lymphatics
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0248545
Author(s):  
Michelle G. Pedler ◽  
J. Mark Petrash ◽  
Prem S. Subramanian

Introduction Cerebrospinal fluid (CSF) outflow has been demonstrated along nasal lymphatics via olfactory nerve projections; flow may be increased by stimulating lymphatic contractility using agents such as noradrenaline and the thromboxane A2 analog U46619. Lymphatics elsewhere in the body show increased contractility upon exposure to the prostaglandin F2alpha analog isoprostane-8-epi-prostaglandin. We investigated the ability of ophthalmic prostaglandin F2alpha analogs to increase CSF outflow when applied to the nasal mucosa by inhalation. Methods Latanoprost (0.1, 0.5, or 1mg/ml), bimatoprost (0.3 or 3mg/ml), travoprost (0.04 or 0.4mg/ml), latanoprostene bunod (0.24 or 2.4mg/ml), tafluprost (0.25 or 2.5mg/ml), or control vehicle (10% DMSO) was administered to awake adult C57B/6 mice by nasal inhalation of 2μl droplets. Multiday dosing (daily for 3 days) of latanoprost also was evaluated. A total of 81 animals were studied including controls. General anesthesia was induced by injection, and fluorescent tracer (AlexaFluor647-labelled ovalbumin) was injected under stereotaxic guidance into the right lateral ventricle. Nasal turbinate tissue was harvested and homogenized after 1 hour for tracer detection by ELISA and fluorometric analysis. Results Inhalation of latanoprost 0.5mg/ml and 1mg/ml led to a 11.5-fold increase in tracer recovery from nasal turbinate tissues compared to controls (3312 pg/ml vs 288 pg/ml, p<0.001 for 0.5mg/ml; 3355 pg/ml vs 288 pg/ml, p<0.001 for 1mg/ml), while latanoprost 0.1 mg/ml enhanced recovery 6-fold (1713 pg/ml vs 288 pg/ml, p<0.01). Tafluprost 0.25mg/ml and bimatoprost 0.3mg/ml showed a modest (1.4x, p<0.05) effect, and the remaining agents showed no significant effect on tracer recovery. After 3 days of daily latanoprost treatment and several hours after the last dose, a persistently increased recovery of tracer was found. Conclusions Prostaglandin F2alpha analogs delivered by nasal inhalation resulted in increased nasal recovery of a CSF fluorescent tracer, implying increased CSF outflow via the nasal lymphatics. The greatest effect, partially dose-dependent, was observed using latanoprost. Further studies are needed to determine the efficacy of these agents in reducing ICP in short and long-term applications.


2021 ◽  
Author(s):  
Michelle G. Pedler ◽  
J. Mark Petrash ◽  
Prem S. Subramanian

AbstractIntroductionCerebrospinal fluid (CSF) outflow has been demonstrated along nasal lymphatics via olfactory nerve projections; flow may be increased by stimulating lymphatic contractility using agents such as noradrenaline and the thromboxane A2 analog U46619. Lymphatics elsewhere in the body show increased contractility upon exposure to the prostaglandin F2alpha analog isoprostane-8-epi-prostaglandin. We investigated the ability of ophthalmic prostaglandin F2alpha analogs to increase CSF outflow when applied to the nasal mucosa by inhalation.MethodsLatanoprost (0.1, 0.5, or 1mg/ml), bimatoprost (0.3 or 3mg/ml), travoprost (0.04 or 0.4mg/ml), latanoprostene bunod (0.24 or 2.4mg/ml), tafluprost (0.25 or 2.5mg/ml), or vehicle (10% DMSO) was administered to awake adult C57B/6 mice by nasal inhalation of 2μl droplets. A total of 67 animals were studied including controls. General anesthesia was induced by injection, and fluorescent tracer (AlexaFluor647-labelled ovalbumin) was injected under stereotaxic guidance into the right lateral ventricle. Nasal turbinate tissue was harvested and homogenized after 1 hour for tracer detection by ELISA and fluorometric analysis.ResultsInhalation of latanoprost 0.5mg/ml and 1mg/ml led to a 11.5-fold increase in tracer recovery from nasal turbinate tissues compared to controls (3312 pg/ml vs 288 pg/ml, p<0.001 for 0.5mg/ml; 3355 pg/ml vs 288 pg/ml, p<0.001 for 1mg/ml), while latanoprost 0.1 mg/ml enhanced recovery 6-fold (1713 pg/ml vs 288 pg/ml, p<0.01). Tafluprost 0.25mg/ml and bimatoprost 0.3mg/ml showed a modest (1.4x, p<0.05) effect, and the remaining agents showed no significant effect on tracer recovery.ConclusionsProstaglandin F2alpha analogs delivered by nasal inhalation resulted in increased nasal recovery of a CSF fluorescent tracer, implying increased CSF outflow via the nasal lymphatics. The greatest effect, partially dose-dependent, was observed using latanoprost. Further studies are needed to determine the efficacy of these agents in reducing ICP in short and long-term applications.


2009 ◽  
Vol 72 (6) ◽  
pp. 694-697 ◽  
Author(s):  
Aristotelis Filippidis ◽  
Kostas N. Fountas

2008 ◽  
Vol 294 (5) ◽  
pp. R1752-R1759 ◽  
Author(s):  
G. Nagra ◽  
J. Li ◽  
J. P. McAllister ◽  
J. Miller ◽  
M. Wagshul ◽  
...  

It has been assumed that the pathogenesis of hydrocephalus includes a cerebrospinal fluid (CSF) absorption deficit. Because a significant portion of CSF absorption occurs into extracranial lymphatics located in the olfactory turbinates, the purpose of this study was to determine whether CSF transport was compromised at this location in a kaolin-induced communicating (extraventricular) hydrocephalus model in rats. Under 1–3% halothane anesthesia, kaolin ( n = 10) or saline ( n = 9) was introduced into the basal cisterns of Sprague-Dawley rats, and the development of hydrocephalus was assessed 1 wk later using MRI. After injection of human serum albumin (125I-HSA) into a lateral ventricle, the tracer enrichment in the olfactory turbinates 30 min postinjection provided an estimate of CSF transport through the cribriform plate into nasal lymphatics. Lateral ventricular volumes in the kaolin group (0.073 ± 0.014 ml) were significantly greater than those in the saline-injected animals (0.016 ± 0.001 ml; P = 0.0014). The CSF tracer enrichment in the olfactory turbinates (expressed as percent injected/g tissue) in the kaolin rats averaged 0.99 ± 0.39 and was significantly lower than that measured in the saline controls (5.86 ± 0.32; P < 0.00001). The largest degree of ventriculomegaly was associated with the lowest levels of lymphatic CSF uptake with lateral ventricular expansion occurring only when almost all of the lymphatic CSF transport capacity had been compromised. We conclude that lymphatic CSF absorption is impaired in a kaolin-communicating hydrocephalus model and that the degree of this impediment may contribute to the severity of the induced disease.


Sign in / Sign up

Export Citation Format

Share Document