core myopathy
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Jamie A. Keen ◽  
Robert A. Beaulieu ◽  
Evan H. Black

2021 ◽  
Vol 12 ◽  
Author(s):  
Kun Huang ◽  
Fang-Fang Bi ◽  
Huan Yang

Background: Congenital myopathy constitutes a heterogeneous group of orphan diseases that are mainly classified on the basis of muscle biopsy findings. This study aims to estimate the prevalence of congenital myopathy through a systematic review and meta-analysis of the literature.Methods: The PubMed, MEDLINE, Web of Science, and Cochrane Library databases were searched for original research articles published in English prior to July 30, 2021. The quality of the included studies was assessed by a checklist adapted from STrengthening the Reporting of OBservational studies in Epidemiology (STROBE). To derive the pooled epidemiological prevalence estimates, a meta-analysis was performed using the random effects model. Heterogeneity was assessed using the Cochrane Q statistic as well as the I2 statistic.Results: A total of 11 studies were included in the systematic review and meta-analysis. Of the 11 studies included, 10 (90.9%) were considered medium-quality, one (9.1%) was considered low-quality, and no study was assessed as having a high overall quality. The pooled prevalence of congenital myopathy in the all-age population was 1.50 (95% CI, 0.93–2.06) per 100,000, while the prevalence in the child population was 2.73 (95% CI, 1.34–4.12) per 100,000. In the pediatric population, the prevalence among males was 2.92 (95% CI, −1.70 to 7.55) per 100,000, while the prevalence among females was 2.47 (95% CI, −1.67 to 6.61) per 100,000. The prevalence estimates of the all-age population per 100,000 were 0.20 (95% CI 0.10–0.35) for nemaline myopathy, 0.37 (95% CI 0.21–0.53) for core myopathy, 0.08 (95% CI −0.01 to 0.18) for centronuclear myopathy, 0.23 (95% CI 0.04–0.42) for congenital fiber-type disproportion myopathy, and 0.34 (95% CI, 0.24–0.44) for unspecified congenital myopathies. In addition, the prevalence estimates of the pediatric population per 100,000 were 0.22 (95% CI 0.03–0.40) for nemaline myopathy, 0.46 (95% CI 0.03–0.90) for core myopathy, 0.44 (95% CI 0.03–0.84) for centronuclear myopathy, 0.25 (95% CI −0.05 to 0.54) for congenital fiber-type disproportion myopathy, and 2.63 (95% CI 1.64–3.62) for unspecified congenital myopathies.Conclusions: Accurate estimates of the prevalence of congenital myopathy are fundamental to supporting public health decision-making. The high heterogeneity and the lack of high-quality studies highlight the need to conduct higher-quality studies on orphan diseases.


Author(s):  
Michio Inoue ◽  
Satoru Noguchi ◽  
Kyuto Sonehara ◽  
Keiko Nakamura-Shindo ◽  
Akira Taniguchi ◽  
...  
Keyword(s):  

Author(s):  
Guido Primiano ◽  
Fabiana Fattori ◽  
Cristina Sancricca ◽  
Enrico Bertini ◽  
Serenella Servidei

2021 ◽  
Vol 80 (4) ◽  
pp. 366-376
Author(s):  
Karlijn Bouman ◽  
Benno Küsters ◽  
Josine M De Winter ◽  
Cynthia Gillet ◽  
Esmee S B Van Kleef ◽  
...  

AbstractNemaline myopathy type 6 (NEM6), KBTBD13-related congenital myopathy is caused by mutated KBTBD13 protein that interacts improperly with thin filaments/actin, provoking impaired muscle-relaxation kinetics. We describe muscle morphology in 18 Dutch NEM6 patients and correlate it with clinical phenotype and pathophysiological mechanisms. Rods were found in in 85% of biopsies by light microscopy, and 89% by electron microscopy. A peculiar ring disposition of rods resulting in ring-rods fiber was observed. Cores were found in 79% of NEM6 biopsies by light microscopy, and 83% by electron microscopy. Electron microscopy also disclosed granulofilamentous protein material in 9 biopsies. Fiber type 1 predominance and prominent nuclear internalization were found. Rods were immunoreactive for α-actinin and myotilin. Areas surrounding the rods showed titin overexpression suggesting derangement of the surrounding sarcomeres. NEM6 myopathology hallmarks are prominent cores, rods including ring-rods fibers, nuclear clumps, and granulofilamentous protein material. This material might represent the histopathologic epiphenomenon of altered interaction between mutated KBTBD13 protein and thin filaments. We claim to classify KBTBD13-related congenital myopathy as rod-core myopathy.


2020 ◽  
Vol 79 (12) ◽  
pp. 1370-1375
Author(s):  
Masashi Ogasawara ◽  
Megumu Ogawa ◽  
Ikuya Nonaka ◽  
Shinichiro Hayashi ◽  
Satoru Noguchi ◽  
...  

Abstract Typical central core disease (CCD) is characterized pathologically by the presence of a core and is accompanied by type 1 fiber uniformity. Congenital neuromuscular disease with uniform type 1 fiber (CNMDU1) is characterized pathologically by the presence of type 1 fiber uniformity but without the abnormal structural changes in muscle fibers. Interestingly, typical CCD and 40% of CNMDU1 cases are caused by the same mutations in RYR1, and thus CNMDU1 has been considered an early precursor to CCD. To better understand the nature of CNMDU1, we re-evaluated muscle biopsies from 16 patients with CNMDU1 using immunohistochemistry to RYR1, triadin and TOM20, and compared this to muscle biopsies from 36 typical CCD patients. In CCD, RYR1, and triadin were present in the core regions, while TOM20 was absent in the core regions. Interestingly, in 5 CNMDU1 cases with the RYR1 mutation, RYR1, and triadin were similarly present in core-like areas, while TOM20 was absent in the subsarcolemmal region. Furthermore, there was a correlation between the core position and the disease duration or progression—the older patients in more advanced stages had more centralized cores. Our results indicate that CNMDU1 due to RYR1 mutation is a de facto core myopathy.


2019 ◽  
Vol 29 ◽  
pp. S134
Author(s):  
M. Davis ◽  
F. Faiz ◽  
K. Woodward ◽  
J. Clayton ◽  
T. Robertson ◽  
...  

2019 ◽  
Vol 29 ◽  
pp. S206
Author(s):  
J. Sun ◽  
S. Luo ◽  
M. Gao ◽  
K. Qiao ◽  
H. Lv ◽  
...  

2018 ◽  
Vol 27 (13) ◽  
pp. 2367-2382 ◽  
Author(s):  
Matteo Suman ◽  
Jenny A Sharpe ◽  
Robert B Bentham ◽  
Vassilios N Kotiadis ◽  
Michela Menegollo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document