viral screening
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 15)

H-INDEX

9
(FIVE YEARS 1)

Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2006
Author(s):  
Anna Y Budkina ◽  
Elena V Korneenko ◽  
Ivan A Kotov ◽  
Daniil A Kiselev ◽  
Ilya V Artyushin ◽  
...  

According to various estimates, only a small percentage of existing viruses have been discovered, naturally much less being represented in the genomic databases. High-throughput sequencing technologies develop rapidly, empowering large-scale screening of various biological samples for the presence of pathogen-associated nucleotide sequences, but many organisms are yet to be attributed specific loci for identification. This problem particularly impedes viral screening, due to vast heterogeneity in viral genomes. In this paper, we present a new bioinformatic pipeline, VirIdAl, for detecting and identifying viral pathogens in sequencing data. We also demonstrate the utility of the new software by applying it to viral screening of the feces of bats collected in the Moscow region, which revealed a significant variety of viruses associated with bats, insects, plants, and protozoa. The presence of alpha and beta coronavirus reads, including the MERS-like bat virus, deserves a special mention, as it once again indicates that bats are indeed reservoirs for many viral pathogens. In addition, it was shown that alignment-based methods were unable to identify the taxon for a large proportion of reads, and we additionally applied other approaches, showing that they can further reveal the presence of viral agents in sequencing data. However, the incompleteness of viral databases remains a significant problem in the studies of viral diversity, and therefore necessitates the use of combined approaches, including those based on machine learning methods.


2021 ◽  
Vol 8 ◽  
Author(s):  
Fabrizio Cleri ◽  
Marc F. Lensink ◽  
Ralf Blossey

DNA aptamers are versatile molecular species obtained by the folding of short single-stranded nucleotide sequences, with highly specific recognition capabilities against proteins. Here we test the ability of DNA aptamers to interact with the spike (S-)protein of the SARS-CoV-2 viral capsid. The S-protein, a trimer made up of several subdomains, develops the crucial function of recognizing the ACE2 receptors on the surface of human cells, and subsequent fusioning of the virus membrane with the host cell membrane. In order to achieve this, the S1 domain of one protomer switches between a closed conformation, in which the binding site is inaccessible to the cell receptors, and an open conformation, in which ACE2 can bind, thereby initiating the entry process of the viral genetic material in the host cell. Here we show, by means of state-of-the-art molecular simulations, that small DNA aptamers experimentally identified can recognize the S-protein of SARS-CoV-2, and characterize the details of the binding process. We find that their interaction with different subdomains of the S-protein can effectively block, or at least considerably slow down the opening process of the S1 domain, thereby significantly reducing the probability of virus-cell binding. We provide evidence that, as a consequence, binding of the human ACE2 receptor may be crucially affected under such conditions. Given the facility and low cost of fabrication of specific aptamers, the present findings could open the way to both an innovative viral screening technique with sub-nanomolar sensitivity, and to an effective and low impact curative strategy.


One Health ◽  
2021 ◽  
pp. 100274
Author(s):  
Xinye Wang ◽  
Leshan Xiu ◽  
Raquel A. Binder ◽  
Teck-Hock Toh ◽  
Jeffrey Soon-Yit Lee ◽  
...  
Keyword(s):  
Rt Pcr ◽  

2021 ◽  
Vol 8 ◽  
pp. 204993612098595
Author(s):  
Nicolas G. Quan ◽  
Hassan Latif ◽  
Martin Krsak ◽  
Michaele Francesco Corbisiero ◽  
Jamie Solis ◽  
...  

Author(s):  
Annette Klein ◽  
Christina Strube ◽  
Stefanie C Becker ◽  
Fanny Naccache

Abstract Madagascar is a hotspot of biodiversity, but poverty and population growth provoke a high risk of conflict between food security and biodiversity conservation in this tropical country. Numerous vector-borne diseases, including viral infections, affect public health in Madagascar and a continuous expansion of anthropogenically used areas intensifies contact on the human–wildlife interface. However, data on human and animal pathogens in potential insect vectors is limited. Therefore, we conducted a parasitological and virological survey of 785 adult female mosquitoes between March and May 2016 at the Ankarafantsika National Park in northwestern Madagascar. Screening included Alpha-, Phlebo-, and Flaviviridae and the recently described filarial nematode species, Lemurfilaria lemuris. The predominant mosquito genus was Culex (91%), followed by Mansonia (4.1%), Anopheles (3.4%), and Aedes (0.9%). Viral screening revealed no arboviruses, but an insect-specific flavivirus in two Culex sitiens pools. No pools screened positive for the lemur-specific filarial nematode L. lemuris.


2020 ◽  
pp. FSO614
Author(s):  
Fabrizio Citarella ◽  
Alessandro Galletti ◽  
Marco Russano ◽  
Paolo Gallo ◽  
Umberto Vespasiani-Gentilucci ◽  
...  

Cancer immunotherapy has become a stronghold in modern oncology. Immune checkpoint inhibitors, in particular anti-PD-1 and anti-PD-L1 antibodies, are approved for the treatment of several solid cancers. In the near future, an increasing number of patients will be eligible for immunotherapy. Therefore, the management of immune-related adverse events is a daily challenge in clinical practice, among which hepatic immune-related toxicity has been described as a rare adverse event. We report the case of a patient treated with nivolumab (an anti-PD-L1 antibody) for a stage IV resected melanoma who developed recurrence of steroid-refractory liver toxicity that was later discovered to be associated with acute exacerbation of chronic undiagnosed hepatitis B. The patient significantly benefited from antiviral treatment. We conclude that serological viral screening is strongly recommended before starting immune checkpoint inhibitor treatment.


2020 ◽  
Author(s):  
Fabrizio Cleri ◽  
Marc F. Lensink ◽  
Ralf Blossey

<div> <div> <div> <p>DNA aptamers are versatile molecular species obtained by the folding of short single-stranded nucleotide sequences, with highly specific recognition capabilities against proteins. Here we test the ability of selected DNA aptamers in interacting with the spike (S-)protein of the SARS-CoV-2 viral capsid. The S-protein, a trimer made up of several subdomains, develops the crucial function of recognizing the ACE2 receptors on the surface of human cells, and sub- sequent fusioning of the virus membrane with the host cell membrane. In order to do this, the S1 domain of one protomer switches between a closed conformation, in which the binding site is inaccessible to the cell receptors, and an open conformation, in which ACE2 can bind, thereby initiating the entry process of the viral genetic material in the host cell. Here we show by means of state-of-the-art molecular simulations that small DNA aptamers can recognize the S-protein of SARS-CoV-2. Moreover, their interaction with different regions of the S-protein can effectively block, or at least considerably slow down the opening process of the S1 domain, thereby largely reducing the probability of virus-cell binding. We also provide evidence that binding of the human ACE2 receptor may be drastically affected under such conditions. Given the facility and low cost of fabrication of specific aptamers, the present findings could open the way to both an innovative viral screening technique with sub-nanomolar sensitivity, and to an effective and low impact curative strategy. </p> </div> </div> </div>


2020 ◽  
Author(s):  
Fabrizio Cleri ◽  
Marc F. Lensink ◽  
Ralf Blossey

<div> <div> <div> <p>DNA aptamers are versatile molecular species obtained by the folding of short single-stranded nucleotide sequences, with highly specific recognition capabilities against proteins. Here we test the ability of selected DNA aptamers in interacting with the spike (S-)protein of the SARS-CoV-2 viral capsid. The S-protein, a trimer made up of several subdomains, develops the crucial function of recognizing the ACE2 receptors on the surface of human cells, and sub- sequent fusioning of the virus membrane with the host cell membrane. In order to do this, the S1 domain of one protomer switches between a closed conformation, in which the binding site is inaccessible to the cell receptors, and an open conformation, in which ACE2 can bind, thereby initiating the entry process of the viral genetic material in the host cell. Here we show by means of state-of-the-art molecular simulations that small DNA aptamers can recognize the S-protein of SARS-CoV-2. Moreover, their interaction with different regions of the S-protein can effectively block, or at least considerably slow down the opening process of the S1 domain, thereby largely reducing the probability of virus-cell binding. We also provide evidence that binding of the human ACE2 receptor may be drastically affected under such conditions. Given the facility and low cost of fabrication of specific aptamers, the present findings could open the way to both an innovative viral screening technique with sub-nanomolar sensitivity, and to an effective and low impact curative strategy. </p> </div> </div> </div>


Author(s):  
Michael Erlichster ◽  
Gursharan Chana ◽  
Daniela Zantomio ◽  
Benjamin Goudey ◽  
Efstratios Skafidas

Abstract Background COVID-19 has highlighted deficiencies in the testing capacity of many developed countries during the early stages of pandemics. Here we describe a strategy utilizing pan-family viral assays to improve early accessibility of large-scale nucleic acid testing. Methods Coronaviruses and SARS-CoV-2 were used as a case-study for assessing utility of pan-family viral assays during the early stages of a novel pandemic. Specificity of a pan-coronavirus (Pan-CoV) assay for a novel pathogen was assessed using the frequency of common human coronavirus (HCoV) species in key populations. A reported Pan-CoV assay was assessed to determine sensitivity to 60 reference coronaviruses, including SARS-CoV-2. The resilience of the primer target regions of this assay to mutation was assessed in 8893 high-quality SARS-CoV-2 genomes to predict ongoing utility during pandemic progression. Results Due to common HCoV species, a Pan-CoV assay would return false positives for as few as 1% of asymptomatic adults, but up to 30% of immunocompromised patients with respiratory disease. Half of reported Pan-CoV assays identify SARS-CoV-2 and with small adjustments can accommodate diverse variation observed in animal coronaviruses. The target region of one well established Pan-CoV assay is highly resistant to mutation compared to species-specific SARS-CoV-2 RT-PCR assays. Conclusions Despite cross-reactivity with common pathogens, pan-family assays may greatly assist management of emerging pandemics through prioritization of high-resolution testing or isolation measures. Targeting highly conserved genomic regions make pan-family assays robust and resilient to mutation. A strategic stockpile of pan-family assays may improve containment of novel diseases prior to the availability of species-specific assays.


Sign in / Sign up

Export Citation Format

Share Document